These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35888358)

  • 1. Fabrication and Characterization of a Composite Ni-SDC Fuel Cell Cathode Reinforced by Ni Foam.
    Komorowska G; Wejrzanowski T; Jamroz J; Jastrzębska A; Wróbel W; Tsai SY; Fung KZ
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silver and Samaria-Doped Ceria (Ag-SDC) Cermet Cathode for Low-Temperature Solid Oxide Fuel Cells.
    Jeong D; Lim Y; Kim H; Park Y; Hong S
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Temperature Current Collection Enabled by the in Situ Phase Transformation of Cobalt-Nickel Foam for Solid Oxide Fuel Cells.
    Lee I; Park MY; Kim HJ; Lee JH; Park JY; Hong J; Kim KI; Park M; Yun JY; Yoon KJ
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39407-39415. PubMed ID: 29072074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesoporous NiO-samaria doped ceria for low-temperature solid oxide fuel cells.
    Kim JY; Kim JH; Choi HW; Kim KH; Park SJ
    J Nanosci Nanotechnol; 2014 Aug; 14(8):6399-403. PubMed ID: 25936125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nickel-Regulated Composite Cathode with Balanced Triple Conductivity for Proton-Conducting Solid Oxide Fuel Cells.
    Tong H; Hu W; Fu M; Yang C; Tao Z
    Adv Sci (Weinh); 2023 Dec; 10(36):e2304555. PubMed ID: 37897316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermally Stable Silver Cathode Covered by Samaria-Doped Ceria for Low-Temperature Solid Oxide Fuel Cells.
    Jeong D; Jang G; Hong S
    Nanomaterials (Basel); 2024 Mar; 14(7):. PubMed ID: 38607096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly CO
    Li M; Zhou W; Zhu Z
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2326-2333. PubMed ID: 28079356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Electrochemical Deposition Route for the Facile Nanofabrication of a Cr-Poisoning-Tolerant La(Ni,Fe)O
    Shaur A; Rehman SU; Kim HS; Song RH; Lim TH; Hong JE; Park SJ; Lee SB
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5730-5738. PubMed ID: 31918549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MnCo
    Cao X; Sun Z; Zheng X; Jin C; Tian J; Li X; Yang R
    ChemSusChem; 2018 Feb; 11(3):574-579. PubMed ID: 29235727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TiC doped palladium/nickel foam cathode for electrocatalytic hydrodechlorination of 2,4-DCBA: Enhanced electrical conductivity and reactive activity.
    Lou Z; Li Y; Zhou J; Yang K; Liu Y; Baig SA; Xu X
    J Hazard Mater; 2019 Jan; 362():148-159. PubMed ID: 30236935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high-performance cathode for the next generation of solid-oxide fuel cells.
    Shao Z; Haile SM
    Nature; 2004 Sep; 431(7005):170-3. PubMed ID: 15356627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A High-Strength Solid Oxide Fuel Cell Supported by an Ordered Porous Cathode Membrane.
    Chen T; Zhang H; Zheng G; Xue Q; Huang Z; Zhou Y; Wang S
    Membranes (Basel); 2024 Feb; 14(2):. PubMed ID: 38392671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A first-principles study on divergent reactions of using a Sr
    Tan W; Huan D; Yang W; Shi N; Wang W; Peng R; Wu X; Lu Y
    RSC Adv; 2018 Jul; 8(47):26448-26460. PubMed ID: 35541048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced sulfur tolerance of nickel-based anodes for oxygen-ion conducting solid oxide fuel cells by incorporating a secondary water storing phase.
    Wang F; Wang W; Qu J; Zhong Y; Tade MO; Shao Z
    Environ Sci Technol; 2014 Oct; 48(20):12427-34. PubMed ID: 25229807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoporous silver cathode surface treated by atomic layer deposition of CeO(x) for low-temperature solid oxide fuel cells.
    Neoh KC; Han GD; Kim M; Kim JW; Choi HJ; Park SW; Shim JH
    Nanotechnology; 2016 May; 27(18):185403. PubMed ID: 27008979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Electrochemical Performance of Sm
    Kiani M; Paydar MH
    Materials (Basel); 2023 Jan; 16(1):. PubMed ID: 36614736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional-Printed Composite Structures: The Effect of LSCF Slurry Solid Loading, Binder, and Direct-Write Process Parameters.
    Yang M; Parupelli SK; Xu Z; Desai S
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. La0.3Sr0.2Mn0.1Zn0.4 oxide-Sm0.2Ce0.8O1.9 (LSMZ-SDC) nanocomposite cathode for low temperature SOFCs.
    Raza R; Abbas G; Liu Q; Patel I; Zhu B
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4994-7. PubMed ID: 22905565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes.
    Belousov VV
    Acc Chem Res; 2017 Feb; 50(2):273-280. PubMed ID: 28186402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. La
    Zhang W; Wang H; Guan K; Wei Z; Zhang X; Meng J; Liu X; Meng J
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26830-26841. PubMed ID: 31268289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.