These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35888376)

  • 1. Predictive Modeling of Compressive Strength for Concrete at Super Early Age.
    Peng X; Zhuang Z; Yang Q
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Study on Mechanical Properties of Concrete at Super-Early Age.
    Yang Q; Sun Y; Peng X
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes.
    Ahmed HU; Mohammed AS; Mohammed AA; Faraj RH
    PLoS One; 2021; 16(6):e0253006. PubMed ID: 34125869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compressive Strength Prediction of Rice Husk Ash Concrete Using a Hybrid Artificial Neural Network Model.
    Li C; Mei X; Dias D; Cui Z; Zhou J
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating the concrete compressive strength using hard clustering and fuzzy clustering based regression techniques.
    Nagwani NK; Deo SV
    ScientificWorldJournal; 2014; 2014():381549. PubMed ID: 25374939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compressive Creep and Shrinkage of High-Strength Concrete Based on Limestone Coarse Aggregate Applied to High-Rise Buildings.
    Hwang E; Kim G; Koo K; Moon H; Choe G; Suh D; Nam J
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing a boosted decision tree regression prediction model as a sustainable tool for compressive strength of environmentally friendly concrete.
    Latif SD
    Environ Sci Pollut Res Int; 2021 Dec; 28(46):65935-65944. PubMed ID: 34327638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Machine Learning Algorithms to Estimate the Compressive Property of High Strength Fiber Reinforced Concrete.
    Dai L; Wu X; Zhou M; Ahmad W; Ali M; Sabri MMS; Salmi A; Ewais DYZ
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supervised Learning Methods for Modeling Concrete Compressive Strength Prediction at High Temperature.
    Ahmad M; Hu JL; Ahmad F; Tang XW; Amjad M; Iqbal MJ; Asim M; Farooq A
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash.
    Safiuddin M; Raman SN; Abdus Salam M; Jumaat MZ
    Materials (Basel); 2016 May; 9(5):. PubMed ID: 28773520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concrete compressive strength prediction modeling utilizing deep learning long short-term memory algorithm for a sustainable environment.
    Latif SD
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):30294-30302. PubMed ID: 33590396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Study to Improve the Reliability of High-Strength Concrete Strength Evaluation Using an Ultrasonic Velocity Method.
    Kim W; Lee T
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the Compressive Strength of the Cement-Fly Ash-Slag Ternary Concrete Using the Firefly Algorithm (FA) and Random Forest (RF) Hybrid Machine-Learning Method.
    Huang J; Sabri MMS; Ulrikh DV; Ahmad M; Alsaffar KAM
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Early-Age Concrete Compressive Strength with Ultrasonic Sensors.
    Yoon H; Kim YJ; Kim HS; Kang JW; Koh HM
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28783128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Concrete Compressive Strength in Saline Soil Environments.
    Yang D; Yan C; Liu S; Jia Z; Wang C
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction Model for Compressive Strength of Porous Concrete with Low-Grade Recycled Aggregate.
    Liu J; Ren F; Quan H
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft computing models to predict the compressive strength of GGBS/FA- geopolymer concrete.
    Ahmed HU; Mohammed AA; Mohammed A
    PLoS One; 2022; 17(5):e0265846. PubMed ID: 35613110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical Model of Constitutive Relation and Failure Criteria of Plastic Concrete under True Triaxial Compressive Stress.
    Hu L; Li S; Zhu J; Yang X
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33383679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction and developing of shear strength of reinforced high strength concrete beams with and without steel fibers using multiple mathematical models.
    Saber AZ
    PLoS One; 2022; 17(3):e0265677. PubMed ID: 35358237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-Tuned Machine Learning Approach for Predicting the Compressive Strength of High-Performance Concrete.
    Al-Shamiri AK; Yuan TF; Kim AJH
    Materials (Basel); 2020 Feb; 13(5):. PubMed ID: 32106394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.