These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 35888380)
1. Effect of an Inert Gas Positive-Pressure Environment on Beryllium Melting under a Pulsed Laser. Sang Y; Xiao M; Zhang Z; Su J Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888380 [TBL] [Abstract][Full Text] [Related]
2. A Real-Time Monitoring Method for Selective Laser Melting of TA1 Materials Based on Radiation Detection of a Molten Pool. Zhou T; Huang W; Chen C Micromachines (Basel); 2024 Apr; 15(5):. PubMed ID: 38793142 [TBL] [Abstract][Full Text] [Related]
3. Effect of Molten Pool Spatial Arrangement on Texture Evolution in Pulsed Laser Additive Manufacturing of Inconel 718. Cheng M; Luo G; Xiao X; Song L Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591620 [TBL] [Abstract][Full Text] [Related]
4. Effect of Selective Laser Melting Process Parameters on Microstructure and Properties of Co-Cr Alloy. Wang JH; Ren J; Liu W; Wu XY; Gao MX; Bai PK Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30150584 [TBL] [Abstract][Full Text] [Related]
5. Effect of Current Waveform on Microstructure Evolution and Mechanical Properties of GH4169 High-Temperature Alloy Tungsten Inert Gas Additive Manufacturing. Zhang X; Zhang J; Xie X; Jiang Z; Chen C; Wu Z; Zhang Y Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336390 [TBL] [Abstract][Full Text] [Related]
6. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team. Hrubiak R; Sinogeikin S; Rod E; Shen G Rev Sci Instrum; 2015 Jul; 86(7):072202. PubMed ID: 26233342 [TBL] [Abstract][Full Text] [Related]
7. Pulsed Laser Spot Welding Thermal-Shock-Induced Microcracking of Inconel 718 Thin Sheet Alloy. Shi M; Ye X; Wang Y; Wu D Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241403 [TBL] [Abstract][Full Text] [Related]
8. Simulation of the Evolution of Thermal Dynamics during Selective Laser Melting and Experimental Verification Using Online Monitoring. Bian P; Shao X; Du J; Ye F; Zhang X; Mu Y Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32784950 [TBL] [Abstract][Full Text] [Related]
9. Effects of Thermal Stress on the Formation and Cracking Behavior of Nickel-Based Superalloys by Selective Laser Melting Based on a Coupled Thermo-Mechanical Model. Nie S; Li L; Wang Q; Zhao R; Lin X; Liu F Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556772 [TBL] [Abstract][Full Text] [Related]
10. A Numerical Study on the Mesoscopic Characteristics of Ti-6Al-4V by Selective Laser Melting. Ao X; Liu J; Xia H; Yang Y Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454547 [TBL] [Abstract][Full Text] [Related]
11. Achievement of a Parameter Window for the Selective Laser Melting Formation of a GH3625 Alloy. Quan G; Deng Q; Zhao Y; Quan M; Wu D Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793400 [TBL] [Abstract][Full Text] [Related]
12. Laser Polishing Die Steel Assisted by Steady Magnetic Field. Zhao Z; Zeng J; Lai Z; Yin J; Guo T Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144116 [TBL] [Abstract][Full Text] [Related]
13. Deformation Prediction and Experimental Study of 316L Stainless Steel Thin-Walled Parts Processed by Additive-Subtractive Hybrid Manufacturing. Wu X; Zhu W; He Y Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639980 [TBL] [Abstract][Full Text] [Related]
14. Simulation of Melting Efficiency in Laser Cutting of Hardox 400 Steel. Girdu CC; Gheorghe C Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295260 [TBL] [Abstract][Full Text] [Related]
15. Investigation on Selective Laser Melting AlSi10Mg Cellular Lattice Strut: Molten Pool Morphology, Surface Roughness and Dimensional Accuracy. Han X; Zhu H; Nie X; Wang G; Zeng X Materials (Basel); 2018 Mar; 11(3):. PubMed ID: 29518900 [TBL] [Abstract][Full Text] [Related]
16. A Simulation Study on the Effect of Residual Stress on the Multi-Layer Selective Laser Melting Processes Considering Solid-State Phase Transformation. Li X; Zhang M; Qi J; Yang Z; Jiao Z Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295243 [TBL] [Abstract][Full Text] [Related]
17. Laser decontamination microscopic process study on radioactive contaminations with Cs Wang Q; Chen H; Wang FS; Ai SF; Liao DS; Wen T Appl Radiat Isot; 2022 Apr; 182():110112. PubMed ID: 35144160 [TBL] [Abstract][Full Text] [Related]
18. Epitaxial Growth of Silicon on Silicon Wafers by Direct Laser Melting. Le Dantec M; Abdulstaar M; Leparoux M; Hoffmann P Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33113916 [TBL] [Abstract][Full Text] [Related]
19. Study on the Numerical Simulation of the SLM Molten Pool Dynamic Behavior of a Nickel-Based Superalloy on the Workpiece Scale. Cao L; Yuan X Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31311118 [TBL] [Abstract][Full Text] [Related]
20. Influence of additive multilayer feature on thermodynamics, stress and microstructure development during laser 3D printing of aluminum-based material. Dai D; Gu D; Poprawe R; Xia M Sci Bull (Beijing); 2017 Jun; 62(11):779-787. PubMed ID: 36659274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]