These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35888490)

  • 1. Raytracing Modelling of Infrared Light Management Using Molybdenum Disulfide (MoS
    Elsmani MI; Fatima N; Torres I; Fernández S; Jallorina MPA; Chelvanathan P; Rais ARM; Daud MNM; Nasir SNS; Sepeai S; Ludin NA; Teridi MAM; Sopian K; Ibrahim MA
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of Double Layer Indium Tin Oxide in Silicon Hetero-Junction Solar Cells.
    Lee AR; Lee DW; Lee SH; Bhopal MF; Kim HJ; Lim KJ; Shin WS; Lee SH; Kim J
    J Nanosci Nanotechnol; 2020 Jan; 20(1):161-167. PubMed ID: 31383151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Brief Review of Transparent Conducting Oxides (TCO): The Influence of Different Deposition Techniques on the Efficiency of Solar Cells.
    Chavan GT; Kim Y; Khokhar MQ; Hussain SQ; Cho EC; Yi J; Ahmad Z; Rosaiah P; Jeon CW
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of WO
    Lee D; Chae M; Ahmad I; Kim JR; Kim HD
    Nanomaterials (Basel); 2023 May; 13(9):. PubMed ID: 37177095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of PEDOT:PSS as a hole selective front contact for silicon heterojunction solar cells.
    Jäckle S; Liebhaber M; Gersmann C; Mews M; Jäger K; Christiansen S; Lips K
    Sci Rep; 2017 May; 7(1):2170. PubMed ID: 28526863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Cleaning and Passivation Technologies for the Fabrication of High-Efficiency Silicon Heterojunction Solar Cells.
    Shi C; Shi J; Guan Z; Ge J
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post passivation light trapping back contacts for silicon heterojunction solar cells.
    Smeets M; Bittkau K; Lentz F; Richter A; Ding K; Carius R; Rau U; Paetzold UW
    Nanoscale; 2016 Nov; 8(44):18726-18733. PubMed ID: 27787533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution Processing Silicon Heterojunction Photocathode for Efficient and Stable Hydrogen Production.
    Chen X; Li Y
    Small; 2024 Apr; ():e2400782. PubMed ID: 38644229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of black silicon surfaces on the performance of back-contacted back silicon heterojunction solar cells.
    Ziegler J; Haschke J; Käsebier T; Korte L; Sprafke AN; Wehrspohn RB
    Opt Express; 2014 Oct; 22 Suppl 6():A1469-76. PubMed ID: 25607304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light trapping in ultrathin 25  μm exfoliated Si solar cells.
    Hilali MM; Saha S; Onyegam E; Rao R; Mathew L; Banerjee SK
    Appl Opt; 2014 Sep; 53(27):6140-7. PubMed ID: 25322089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance Enhancement of an MoS
    Ali MH; Al Mamun MA; Haque MD; Rahman MF; Hossain MK; Md Touhidul Islam AZ
    ACS Omega; 2023 Feb; 8(7):7017-7029. PubMed ID: 36844558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles.
    Tan H; Santbergen R; Smets AH; Zeman M
    Nano Lett; 2012 Aug; 12(8):4070-6. PubMed ID: 22738234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanocrystalline silicon thin film growth and application for silicon heterojunction solar cells: a short review.
    Sharma M; Panigrahi J; Komarala VK
    Nanoscale Adv; 2021 Jun; 3(12):3373-3383. PubMed ID: 36133724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between in Situ Diagnostics of the Hydrogen Plasma and the Interface Passivation Quality of Hydrogen Plasma Post-Treated a-Si:H in Silicon Heterojunction Solar Cells.
    Soman A; Nsofor U; Das U; Gu T; Hegedus S
    ACS Appl Mater Interfaces; 2019 May; 11(17):16181-16190. PubMed ID: 30951278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polycrystalline silicon thin-film solar cells with plasmonic-enhanced light-trapping.
    Varlamov S; Rao J; Soderstrom T
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22805108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance analysis of rigorous coupled-wave analysis and its integration in a coupled modeling approach for optical simulation of complete heterojunction silicon solar cells.
    Lokar Z; Lipovsek B; Topic M; Krc J
    Beilstein J Nanotechnol; 2018; 9():2315-2329. PubMed ID: 30202700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved amorphous/crystalline silicon interface passivation for heterojunction solar cells by low-temperature chemical vapor deposition and post-annealing treatment.
    Wang F; Zhang X; Wang L; Jiang Y; Wei C; Xu S; Zhao Y
    Phys Chem Chem Phys; 2014 Oct; 16(37):20202-8. PubMed ID: 25138166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomically Thin-Layered Molybdenum Disulfide (MoS
    Singh E; Kim KS; Yeom GY; Nalwa HS
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3223-3245. PubMed ID: 28045492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells.
    Pathi P; Peer A; Biswas R
    Nanomaterials (Basel); 2017 Jan; 7(1):. PubMed ID: 28336851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of high conducting phosphorous doped nanocrystalline thin silicon films for silicon heterojunction solar cells application.
    Bhattacharya S; Pandey A; Alam S; Komarala VK
    Nanotechnology; 2024 May; 35(32):. PubMed ID: 38710179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.