These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35888503)

  • 1. Influence Mechanisms of Inclusion Types on Rotating Bending Fatigue Properties of SAE52100 Bearing Steel.
    Shi Z; Li J; Zhang X; Shang C; Cao W
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bending Fatigue Behaviors Analysis and Fatigue Life Prediction of 20Cr2Ni4 Gear Steel with Different Stress Concentrations near Non-metallic Inclusions.
    Xing Z; Wang Z; Wang H; Shan D
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31640231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Fatigue Behaviors of a Medium-Carbon Pearlitic Wheel-Steel with Elongated Sulfides in High-Cycle and Very-High-Cycle Regimes.
    Liu L; Ma Y; Liu S; Wang S
    Materials (Basel); 2021 Aug; 14(15):. PubMed ID: 34361511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue characteristics of SAE52100 steel via ultrasonic nanocrystal surface modification technology.
    Pyun YS; Suh CM; Yamaguchi T; Im JS; Kim JH; Amanov A; Park JH
    J Nanosci Nanotechnol; 2012 Jul; 12(7):6089-95. PubMed ID: 22966714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Non-Metallic Inclusions on Bending Fatigue Strength of High-Quality Carbon Constructional Steel Heated in an Industrial Electric Arc Furnace.
    Lipiński T
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on Precipitation and Growth of TiN in GCr15 Bearing Steel during Solidification.
    Li B; Shi X; Guo H; Guo J
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31064151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization on Crack Initiation and Early Propagation Region of Nickel-Based Alloys in Very High Cycle Fatigue.
    Chen Z; Dong Z; Liu C; Dai Y; He C
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructure and Fatigue Damage of 316L Stainless Steel Manufactured by Selective Laser Melting (SLM).
    Wang Z; Yang S; Huang Y; Fan C; Peng Z; Gao Z
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Very high cycle fatigue behavior of SAE52100 bearing steel by ultrasonic nanocrystalline surface modification.
    Cho IS; He Y; Li K; Oh JY; Shin K; Lee CS; Park IG
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8264-9. PubMed ID: 25958512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interior Fracture Mechanism Analysis and Fatigue Life Prediction of Surface-Hardened Gear Steel under Axial Loading.
    Li W; Deng H; Liu P
    Materials (Basel); 2016 Oct; 9(10):. PubMed ID: 28773962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matrix effects in the energy dispersive X-ray analysis of CaO-Al(2)O(3)-MgO inclusions in steel.
    Pistorius PC; Verma N
    Microsc Microanal; 2011 Dec; 17(6):963-71. PubMed ID: 22051086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue Properties of the Ultra-High Strength Steel TM210A.
    Yin GQ; Kang X; Zhao GP
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28891934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Oxide Metallurgy on Inclusions in 125 ksi Grade OCTG Steel with Sulfide Stress Corrosion Resistance.
    Zhang S; Li Y; Wang P; Zhu F; Yang Y; Xiao B
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Kinetic Model for the Modification of Al
    Xi Z; Li C; Wang L
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33803143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Ti and Cu Addition on Inclusion Modification and Corrosion Behavior in Simulated Coarse-Grained Heat-Affected Zone of Low-Alloy Steels.
    Wang Y; Zhang X; Wei W; Wan X; Liu J; Wu K
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33562400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Very High Cycle Fatigue Behavior of Additively Manufactured 316L Stainless Steel.
    Voloskov B; Evlashin S; Dagesyan S; Abaimov S; Akhatov I; Sergeichev I
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32722093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The investigation of precipitation behavior of titanium compounds for high titanium steel based on in situ observation.
    Zhu X; Yang J; Wang S; Bu S; Shen M; Miao X; Li X
    PLoS One; 2023; 18(4):e0275049. PubMed ID: 37011085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the Scatter Index of Non-Metallic Inclusions in Structural Steel on the Fatigue Resistance Coefficient.
    Lipiński T
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the Initial Corrosion Destruction of a Metal Matrix around Different Non-Metallic Inclusions on Surfaces of Pipeline Steels.
    Sidorova E; Karasev A; Kuznetsov D; Jönsson PG
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discerning phase-matrices for individual nitride inclusions within ultra-high-strength steel: experiment driven DFT investigation.
    Kistanov AA; Rani E; Singh H; Fabritius T; Huttula M; Cao W
    Phys Chem Chem Phys; 2022 Jan; 24(3):1456-1461. PubMed ID: 34985487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.