These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35888519)

  • 21. Recycling of blast furnace sludge by briquetting with starch binder: Waste gas from thermal treatment utilizable as a fuel.
    Drobíková K; Plachá D; Motyka O; Gabor R; Kutláková KM; Vallová S; Seidlerová J
    Waste Manag; 2016 Feb; 48():471-477. PubMed ID: 26684056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PAH and soot emissions from burning components of medical waste: examination/surgical gloves and cotton pads.
    Levendis YA; Atal A; Carlson JB; Quintana MD
    Chemosphere; 2001; 42(5-7):775-83. PubMed ID: 11219703
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitrogen oxides emissions from the MILD combustion with the conditions of recirculation gas.
    Park M; Shim SH; Jeong SH; Oh KJ; Lee SS
    J Air Waste Manag Assoc; 2017 Apr; 67(4):402-411. PubMed ID: 27649808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical analysis of economic and environmental benefits of marine fuel conversion from diesel oil to natural gas for container ships.
    Elkafas AG; Elgohary MM; Shouman MR
    Environ Sci Pollut Res Int; 2021 Mar; 28(12):15210-15222. PubMed ID: 33236307
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.
    Stettler ME; Midgley WJ; Swanson JJ; Cebon D; Boies AM
    Environ Sci Technol; 2016 Feb; 50(4):2018-26. PubMed ID: 26757000
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mercury mass flow in iron and steel production process and its implications for mercury emission control.
    Wang F; Wang S; Zhang L; Yang H; Gao W; Wu Q; Hao J
    J Environ Sci (China); 2016 May; 43():293-301. PubMed ID: 27155436
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of binder choice in converter and blast furnace sludge briquette preparation: Environmental and practical implications.
    Drobíková K; Vallová S; Motyka O; Mamulová Kutláková K; Plachá D; Seidlerová J
    Waste Manag; 2018 Sep; 79():30-37. PubMed ID: 30343758
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The roles of energy and material efficiency in meeting steel industry CO2 targets.
    Milford RL; Pauliuk S; Allwood JM; Müller DB
    Environ Sci Technol; 2013 Apr; 47(7):3455-62. PubMed ID: 23470090
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Products of steel slags an opportunity to save natural resources.
    Motz H; Geiseler J
    Waste Manag; 2001; 21(3):285-93. PubMed ID: 11280521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combustion and NOx emission characteristics with respect to staged-air damper opening in a 600 MWe down-fired pulverized-coal furnace under deep-air-staging conditions.
    Kuang M; Li Z; Wang Z; Jing X; Liu C; Zhu Q; Ling Z
    Environ Sci Technol; 2014; 48(1):837-44. PubMed ID: 24274316
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical Simulation Study of Gas-Solid Heat Transfer and Decomposition Processes of Limestone Calcined with Blast Furnace Gas in a Parallel Flow Regenerative Lime Kiln.
    Duan S; Li B; Rong W
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683325
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Implementation of various bowl designs in an HPDI natural gas engine focused on performance and pollutant emissions.
    Bao J; Qu P; Wang H; Zhou C; Zhang L; Shi C
    Chemosphere; 2022 Sep; 303(Pt 3):135275. PubMed ID: 35697107
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of basic oxygen furnace slag type on carbon dioxide sequestration from landfill gas emissions.
    Reddy KR; Chetri JK; Kumar G; Grubb DG
    Waste Manag; 2019 Feb; 85():425-436. PubMed ID: 30803598
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methane Gas Cofiring Effects on Combustion and NO
    Kim KM; Kim GB; Lee BH; Jeon CH; Keum JH
    ACS Omega; 2021 Nov; 6(46):31132-31146. PubMed ID: 34841155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrating a Top-Gas Recycling and CO
    Hu Y; Qiu Y; Chen J; Hao L; Rufford TE; Rudolph V; Wang G
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329460
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Performance of a flameless combustion furnace using biogas and natural gas.
    Colorado AF; Herrera BA; Amell AA
    Bioresour Technol; 2010 Apr; 101(7):2443-9. PubMed ID: 19944602
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polynuclear aromatic hydrocarbon and particulate emissions from two-stage combustion of polystyrene: the effects of the secondary furnace (afterburner) temperature and soot filtration.
    Wang J; Richter H; Howard JB; Levendis YA; Carlson J
    Environ Sci Technol; 2002 Feb; 36(4):797-808. PubMed ID: 11878400
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enriching blast furnace gas by removing carbon dioxide.
    Zhang C; Sun Z; Chen S; Wang B
    J Environ Sci (China); 2013 Dec; 25 Suppl 1():S196-200. PubMed ID: 25078829
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exergetic sustainability analysis of industrial furnace: a case study.
    Chowdhury H; Chowdhury T; Hossain N; Chowdhury P; Salam B; Sait SM; Mahlia TMI
    Environ Sci Pollut Res Int; 2021 Mar; 28(10):12881-12888. PubMed ID: 33094462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.
    Waldner MH; Halter R; Sigg A; Brosch B; Gehrmann HJ; Keunecke M
    Waste Manag; 2013 Feb; 33(2):317-26. PubMed ID: 23044260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.