BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35888700)

  • 21. UGT709G1: a novel uridine diphosphate glycosyltransferase involved in the biosynthesis of picrocrocin, the precursor of safranal in saffron (Crocus sativus).
    Diretto G; Ahrazem O; Rubio-Moraga Á; Fiore A; Sevi F; Argandoña J; Gómez-Gómez L
    New Phytol; 2019 Oct; 224(2):725-740. PubMed ID: 31356694
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical analysis of saffron by HPLC based crocetin estimation.
    Reddy CN; Bharate SB; Vishwakarma RA; Bharate SS
    J Pharm Biomed Anal; 2020 Mar; 181():113094. PubMed ID: 31927167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The carotenoid cleavage dioxygenase CCD2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme.
    Ahrazem O; Rubio-Moraga A; Berman J; Capell T; Christou P; Zhu C; Gómez-Gómez L
    New Phytol; 2016 Jan; 209(2):650-63. PubMed ID: 26377696
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of salt stress on the production of apocarotenoids and the expression of genes related to their biosynthesis in saffron.
    Moslemi FS; Vaziri A; Sharifi G; Gharechahi J
    Mol Biol Rep; 2021 Feb; 48(2):1707-1715. PubMed ID: 33611780
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Formation and Sequestration of Nonendogenous Ketocarotenoids in Transgenic
    Mortimer CL; Misawa N; Perez-Fons L; Robertson FP; Harada H; Bramley PM; Fraser PD
    Plant Physiol; 2017 Mar; 173(3):1617-1635. PubMed ID: 28153925
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intestinal formation of trans-crocetin from saffron extract (Crocus sativus L.) and in vitro permeation through intestinal and blood brain barrier.
    Lautenschläger M; Sendker J; Hüwel S; Galla HJ; Brandt S; Düfer M; Riehemann K; Hensel A
    Phytomedicine; 2015 Jan; 22(1):36-44. PubMed ID: 25636868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neuroprotective properties of exosomes and chitosan nanoparticles of Tomafran, a bioengineered tomato enriched in crocins.
    Etxebeste-Mitxeltorena M; Niza E; Fajardo CM; Gil C; Gómez-Gómez L; Martinez A; Ahrazem O
    Nat Prod Bioprospect; 2024 Jan; 14(1):9. PubMed ID: 38212507
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of carotenoid degradation and production of apocarotenoids in natural and engineered organisms.
    Liang MH; He YJ; Liu DM; Jiang JG
    Crit Rev Biotechnol; 2021 Jun; 41(4):513-534. PubMed ID: 33541157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Research progress on the pharmacological activity, biosynthetic pathways, and biosynthesis of crocins.
    Hua Z; Liu N; Yan X
    Beilstein J Org Chem; 2024; 20():741-752. PubMed ID: 38633914
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crocins transport in Crocus sativus: the long road from a senescent stigma to a newborn corm.
    Rubio-Moraga A; Trapero A; Ahrazem O; Gómez-Gómez L
    Phytochemistry; 2010 Sep; 71(13):1506-13. PubMed ID: 20573363
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Specialized Roles in Carotenogenesis and Apocarotenogenesis of the Phytoene Synthase Gene Family in Saffron.
    Ahrazem O; Diretto G; Argandoña Picazo J; Fiore A; Rubio-Moraga Á; Rial C; Varela RM; Macías FA; Castillo R; Romano E; Gómez-Gómez L
    Front Plant Sci; 2019; 10():249. PubMed ID: 30886624
    [No Abstract]   [Full Text] [Related]  

  • 32. Metabolic engineering of ketocarotenoid biosynthesis in leaves and flowers of tobacco species.
    Gerjets T; Sandmann M; Zhu C; Sandmann G
    Biotechnol J; 2007 Oct; 2(10):1263-9. PubMed ID: 17619231
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Pu X; He C; Yang Y; Wang W; Hu K; Xu Z; Song J
    ACS Synth Biol; 2020 May; 9(5):1160-1168. PubMed ID: 32216376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrated SMRT and Illumina Sequencing Provide New Insights into Crocin Biosynthesis of
    Shen T; Zheng Y; Liu Q; Chen C; Huang L; Deng S; Xu M; Yang C
    Int J Mol Sci; 2022 Jun; 23(11):. PubMed ID: 35683000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative analysis of apocarotenoids and phenolic constituents of Crocus sativus stigmas from 11 countries: Ecological impact.
    Mykhailenko O; Bezruk I; Ivanauskas L; Georgiyants V
    Arch Pharm (Weinheim); 2022 Apr; 355(4):e2100468. PubMed ID: 35048403
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A review of the chemistry and uses of crocins and crocetin, the carotenoid natural dyes in saffron, with particular emphasis on applications as colorants including their use as biological stains.
    Bathaie SZ; Farajzade A; Hoshyar R
    Biotech Histochem; 2014 Aug; 89(6):401-11. PubMed ID: 24665936
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential interaction of Or proteins with the PSY enzymes in saffron.
    Ahrazem O; López AJ; Argandoña J; Castillo R; Rubio-Moraga Á; Gómez-Gómez L
    Sci Rep; 2020 Jan; 10(1):552. PubMed ID: 31953512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prospects and progress on crocin biosynthetic pathway and metabolic engineering.
    Liu T; Yu S; Xu Z; Tan J; Wang B; Liu YG; Zhu Q
    Comput Struct Biotechnol J; 2020; 18():3278-3286. PubMed ID: 33209212
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptome analysis reveals novel enzymes for apo-carotenoid biosynthesis in saffron and allows construction of a pathway for crocetin synthesis in yeast.
    Tan H; Chen X; Liang N; Chen R; Chen J; Hu C; Li Q; Li Q; Pei W; Xiao W; Yuan Y; Chen W; Zhang L
    J Exp Bot; 2019 Sep; 70(18):4819-4834. PubMed ID: 31056664
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anti-Depressant Properties of Crocin Molecules in Saffron.
    Siddiqui SA; Ali Redha A; Snoeck ER; Singh S; Simal-Gandara J; Ibrahim SA; Jafari SM
    Molecules; 2022 Mar; 27(7):. PubMed ID: 35408474
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.