These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35888845)

  • 1. Planar Optofluidic Integration of Ring Resonator and Microfluidic Channels.
    Testa G; Persichetti G; Bernini R
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid Core ARROW Waveguides: A Promising Photonic Structure for Integrated Optofluidic Microsensors.
    Testa G; Persichetti G; Bernini R
    Micromachines (Basel); 2016 Mar; 7(3):. PubMed ID: 30407419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optofluidic waveguides: I. Concepts and implementations.
    Schmidt H; Hawkins AR
    Microfluid Nanofluidics; 2008 Jan; 4(1-2):3-16. PubMed ID: 21442048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid optofluidic integration.
    Parks JW; Cai H; Zempoaltecatl L; Yuzvinsky TD; Leake K; Hawkins AR; Schmidt H
    Lab Chip; 2013 Oct; 13(20):4118-23. PubMed ID: 23969694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free-Space Excitation of Optofluidic Devices for Pattern-Based Single Particle Detection.
    Amin MN; Ganjalizadeh V; Hamblin M; Hawkins AR; Schmidt H
    IEEE Photonics Technol Lett; 2021 Aug; 33(16):884-887. PubMed ID: 34744399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid silicon-PDMS optofluidic platform for sensing applications.
    Testa G; Persichetti G; Sarro PM; Bernini R
    Biomed Opt Express; 2014 Feb; 5(2):417-26. PubMed ID: 24575337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Versatile waveguide-coupled optofluidic devices based on liquid core optical ring resonators.
    White IM; Gohring J; Sun Y; Yang G; Lacey S; Fan X
    Appl Phys Lett; 2007 Dec; 91(24):2411041-2411043. PubMed ID: 21479124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optofluidic trapping and transport on solid core waveguides within a microfluidic device.
    Schmidt BS; Yang AH; Erickson D; Lipson M
    Opt Express; 2007 Oct; 15(22):14322-34. PubMed ID: 19550709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and Characterisation of a Whole Hybrid Sol-Gel Optofluidic Platform for Biosensing Applications.
    MacHugh E; Antony G; Mallik AK; Kaworek A; McCormack D; Duffy B; Oubaha M
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized ARROW-Based MMI Waveguides for High Fidelity Excitation Patterns for Optofluidic Multiplexing.
    Stott MA; Ganjalizadeh V; Olsen M; Orfila M; McMurray J; Schmidt H; Hawkins AR
    IEEE J Quantum Electron; 2018 Jun; 54(3):. PubMed ID: 29657333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical-assisted femtosecond laser writing of lab-in-fibers.
    Haque M; Lee KK; Ho S; Fernandes LA; Herman PR
    Lab Chip; 2014 Oct; 14(19):3817-29. PubMed ID: 25120138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optofluidic devices with integrated solid-state nanopores.
    Liu S; Hawkins AR; Schmidt H
    Mikrochim Acta; 2016 Apr; 183(4):1275-1287. PubMed ID: 27046940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer waveguide backplanes for optical sensor interfaces in microfluidics.
    Lee KS; Lee HL; Ram RJ
    Lab Chip; 2007 Nov; 7(11):1539-45. PubMed ID: 17960283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optofluidic Waveguides in Teflon AF-Coated PDMS Microfluidic Channels.
    Cho SH; Godin J; Lo YH
    IEEE Photonics Technol Lett; 2009 Aug; 21(15):1057-1059. PubMed ID: 20729984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compact and high Q-factor multimode racetrack ring resonator based on transformation optics.
    Cai L; Gao D; Dong J; Hou J; Yang C; Chen S; Zhang X
    Opt Express; 2022 Apr; 30(9):15766-15776. PubMed ID: 35473290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust integrated optofluidic-ring-resonator dye lasers.
    Sun Y; Suter JD; Fan X
    Opt Lett; 2009 Apr; 34(7):1042-4. PubMed ID: 19340213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optofluidic ring resonator switch for optical particle transport.
    Yang AH; Erickson D
    Lab Chip; 2010 Mar; 10(6):769-74. PubMed ID: 20221566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of optical components on-chip for scattering and fluorescence detection in an optofluidic device.
    Watts BR; Zhang Z; Xu CQ; Cao X; Lin M
    Biomed Opt Express; 2012 Nov; 3(11):2784-93. PubMed ID: 23162718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monolithic integration of microfluidic channels and optical waveguides in silica on silicon.
    Friis P; Hoppe K; Leistiko O; Mogensen KB; Hübner J; Kutter JP
    Appl Opt; 2001 Dec; 40(34):6246-51. PubMed ID: 18364929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis.
    Bliss CL; McMullin JN; Backhouse CJ
    Lab Chip; 2007 Oct; 7(10):1280-7. PubMed ID: 17896011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.