These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35888852)

  • 1. Design and Thermal Analysis of Flexible Microheaters.
    Li D; Ruan Y; Chen C; He W; Chi C; Lin Q
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microheater: material, design, fabrication, temperature control, and applications-a role in COVID-19.
    Jeroish ZE; Bhuvaneshwari KS; Samsuri F; Narayanamurthy V
    Biomed Microdevices; 2021 Dec; 24(1):3. PubMed ID: 34860299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Microheater with a Large Heating Area and Low Thermal Stress in the Heating Area.
    Zhang T; Pan Z; Zhang C; Xiong L; Yang C; Zhang J; Shi M; Wang Y; Qu W
    Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38258249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser microfabrication of a microheater chip for cell culture outside a cell incubator.
    Nieto D; McGlynn P; de la Fuente M; Lopez-Lopez R; O'connor GM
    Colloids Surf B Biointerfaces; 2017 Jun; 154():263-269. PubMed ID: 28347948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Printed and Flexible Microheaters Based on Carbon Nanotubes.
    Falco A; Romero FJ; Loghin FC; Lyuleeva A; Becherer M; Lugli P; Morales DP; Rodriguez N; Salmerón JF; Rivadeneyra A
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32961690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible Inkjet-Printed Heaters Utilizing Graphene-Based Inks.
    Barmpakos D; Belessi V; Xanthopoulos N; Krontiras CA; Kaltsas G
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Performance-Enhanced Liquid Metal-Based Microheater with Parallel Ventilating Side-Channels.
    Zhang L; Zhang P; Wang R; Zhang R; Li Z; Liu W; Wang Q; Gao M; Gui L
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31991611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature control of microheaters for localized carbon nanotube synthesis.
    Lu J; Xu T; Miao J
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10498-502. PubMed ID: 22408934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of a Low-Power Chemoresistive Gas Sensor: Predictive Thermal Modelling and Mechanical Failure Analysis.
    Gaiardo A; Novel D; Scattolo E; Crivellari M; Picciotto A; Ficorella F; Iacob E; Bucciarelli A; Petti L; Lugli P; Bagolini A
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33503884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Versatile printed microheaters to enable low-power thermal control in paper diagnostics.
    Byers KM; Lin LK; Moehling TJ; Stanciu L; Linnes JC
    Analyst; 2019 Dec; 145(1):184-196. PubMed ID: 31729492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A silicon probe with integrated microheaters for thermal marking and monitoring of neural tissue.
    Chen J; Wise KD
    IEEE Trans Biomed Eng; 1997 Aug; 44(8):770-4. PubMed ID: 9254990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of Undoped Few-Layer Graphene-Based Transparent Heaters.
    Zhang Y; Liu H; Tan L; Zhang Y; Jeppson K; Wei B; Liu J
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31878269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-Term Operational Stability of Ta/Pt Thin-Film Microheaters: Impact of the Ta Adhesion Layer.
    Kalinin IA; Roslyakov IV; Khmelenin DN; Napolskii KS
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible Particle Focusing and Switching in Continuous Flow via Controllable Thermal Buoyancy Convection.
    Zhang K; Ren Y; Hou L; Jiang T; Jiang H
    Anal Chem; 2020 Feb; 92(3):2778-2786. PubMed ID: 31909587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pattern-Dependent Radio Frequency Heating of Laser-Induced Graphene Flexible Heaters.
    Mahbub H; Saed MA; Malmali M
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):18074-18086. PubMed ID: 36976839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides.
    Yan S; Zhu X; Frandsen LH; Xiao S; Mortensen NA; Dong J; Ding Y
    Nat Commun; 2017 Feb; 8():14411. PubMed ID: 28181531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inexpensive Graphene Oxide Heaters Lithographed by Laser.
    Romero FJ; Rivadeneyra A; Ortiz-Gomez I; Salinas A; Godoy A; Morales DP; Rodriguez N
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31438484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A High-Efficiency Driver Circuit for a Gas-Sensor Microheater Based on a Switch-Mode DC-to-DC Converter.
    Yang TS; Chiou JC
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32961704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible droplet transportation and coalescence via controllable thermal fields.
    Zhang K; Xiang W; Liu J; Xie Z
    Anal Chim Acta; 2023 Oct; 1277():341669. PubMed ID: 37604623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polydimethylsiloxane microfluidic chip with integrated microheater and thermal sensor.
    Wu J; Cao W; Wen W; Chang DC; Sheng P
    Biomicrofluidics; 2009 Jan; 3(1):12005. PubMed ID: 19693386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.