These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35888895)

  • 1. Analysis and Characterization of Optimized Dual-Frequency Vibration Energy Harvesters for Low-Power Industrial Applications.
    Bouhedma S; Hu S; Schütz A; Lange F; Bechtold T; Ouali M; Hohlfeld D
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. System-Level Model and Simulation of a Frequency-Tunable Vibration Energy Harvester.
    Bouhedma S; Rao Y; Schütz A; Yuan C; Hu S; Lange F; Bechtold T; Hohlfeld D
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31947540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic Frequency Tuning of a Multimodal Vibration Energy Harvester.
    Bouhedma S; Zheng Y; Lange F; Hohlfeld D
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30866447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband Vibration-Based Energy Harvesting for Wireless Sensor Applications Using Frequency Upconversion.
    Li J; Ouro-Koura H; Arnow H; Nowbahari A; Galarza M; Obispo M; Tong X; Azadmehr M; Halvorsen E; Hella MM; Tichy JA; Borca-Tasciuc DA
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Hybrid Piezoelectric and Electromagnetic Broadband Harvester with Double Cantilever Beams.
    Jiang B; Zhu F; Yang Y; Zhu J; Yang Y; Yuan M
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear Segmented Arc-Shaped Piezoelectric Branch Beam Energy Harvester for Ultra-Low Frequency Vibrations.
    Piyarathna IE; Thabet AM; Ucgul M; Lemckert C; Lim YY; Tang ZS
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Analysis of a Magnetically Coupled Multi-Frequency Hybrid Energy Harvester.
    Xu Z; Yang H; Zhang H; Ci H; Zhou M; Wang W; Meng A
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31330800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bandwidth Broadening of Piezoelectric Energy Harvesters Using Arrays of a Proposed Piezoelectric Cantilever Structure.
    Salem MS; Ahmed S; Shaker A; Alshammari MT; Al-Dhlan KA; Alanazi A; Saeed A; Abouelatta M
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a two-degree-of-freedom magnetic levitation vibration energy harvester for bridge vibration response analysis.
    Xie D; Zheng Z; Zhu Y
    Heliyon; 2024 Mar; 10(5):e26000. PubMed ID: 38434262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations.
    Kumari N; Rakotondrabe M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crack Protective Layered Architecture of Lead-Free Piezoelectric Energy Harvester in Bistable Configuration.
    Rubes O; Machu Z; Sevecek O; Hadas Z
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33066546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Bird-Shape Broadband Piezoelectric Energy Harvester for Low Frequency Vibrations.
    Yu H; Zhang X; Shan X; Hu L; Zhang X; Hou C; Xie T
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Magnetically Coupled Piezoelectric-Electromagnetic Low-Frequency Multidirection Hybrid Energy Harvester.
    Zhu Y; Zhang Z; Zhang P; Tan Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multimodal MEMS vibration energy harvester with cascaded flexible and silicon beams for ultralow frequency response.
    Feng H; Bu L; Li Z; Xu S; Hu B; Xu M; Jiang S; Wang X
    Microsyst Nanoeng; 2023; 9():33. PubMed ID: 36969966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of vibration energy harvesters through a two-stage design: power production at single frequency excitation.
    Fernando JS; Sun Q
    Rev Sci Instrum; 2013 Nov; 84(11):114704. PubMed ID: 24289422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the Key Factors Affecting the Capability and Optimization for Magnetostrictive Iron-Gallium Alloy Ambient Vibration Harvesters.
    Liu H; Cong C; Cao C; Zhao Q
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency.
    Zhang Y; Wang T; Zhang A; Peng Z; Luo D; Chen R; Wang F
    Rev Sci Instrum; 2016 Dec; 87(12):125001. PubMed ID: 28040962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Frequency-Adjustable Tuning Fork Electromagnetic Energy Harvester.
    Wu Q; Gao S; Jin L; Guo S; Yin Z; Fu H
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the Bandwidth and Energy Production of Piezoelectric Energy Harvester Using Novel Multimode Bent Branched Beam Design for Human Motion Application.
    Piyarathna IE; Lim YY; Edla M; Thabet AM; Ucgul M; Lemckert C
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-frequency meandering piezoelectric vibration energy harvester.
    Berdy DF; Srisungsitthisunti P; Jung B; Xu X; Rhoads JF; Peroulis D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):846-58. PubMed ID: 22622969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.