These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35888951)

  • 1. Quantitative Analysis of Drag Force for Task-Specific Micromachine at Low Reynolds Numbers.
    Wang Q; Wang Z
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Dynamic Model of Drag Force for Catalytic Micromotors Based on Navier⁻Stokes Equations.
    Wang Z; Chi Q; Bai T; Wang Q; Liu L
    Micromachines (Basel); 2018 Sep; 9(9):. PubMed ID: 30424392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: model and experiment.
    Li L; Wang J; Li T; Song W; Zhang G
    Soft Matter; 2014 Oct; 10(38):7511-8. PubMed ID: 25080889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flying Squirrel-Inspired Motion Control of a Light-Deformed Pt-PAzoMA Micromotor through Drag Force Manipulation.
    Lin X; Xu B; Zhao Z; Yang X; Xing Y; You C; Kong Y; Cui J; Zhu L; Lin S; Mei Y
    ACS Appl Mater Interfaces; 2021 Jun; 13(25):30106-30117. PubMed ID: 34143593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How to Make a Fast, Efficient Bubble-Driven Micromotor: A Mechanical View.
    Liu L; Bai T; Chi Q; Wang Z; Xu S; Liu Q; Wang Q
    Micromachines (Basel); 2017 Aug; 8(9):. PubMed ID: 30400455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Driving Forces of the Bubble-Driven Tubular Micromotor Based on the Full Life-Cycle of the Bubble.
    Lin Y; Geng X; Chi Q; Wang C; Wang Z
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31234370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive Understanding of Self-Propelled Janus Pt/Fe
    Kang E; Lee W; Lee H
    J Phys Chem Lett; 2023 Nov; 14(44):9811-9818. PubMed ID: 37889127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flight of the honeybee. V. Drag and lift coefficients of the bee's body; implications for flight dynamics.
    Nachtigall W; Hanauer-Thieser U
    J Comp Physiol B; 1992; 162(3):267-77. PubMed ID: 1613166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calligraphy/Painting Based on a Bioinspired Light-Driven Micromotor with Concentration-Dependent Motion Direction Reversal and Dynamic Swarming Behavior.
    Sun Y; Liu Y; Zhang D; Zhang H; Jiang J; Duan R; Xiao J; Xing J; Zhang D; Dong B
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40533-40542. PubMed ID: 31577118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-Like Micromotors.
    Esteban-Fernández de Ávila B; Gao W; Karshalev E; Zhang L; Wang J
    Acc Chem Res; 2018 Sep; 51(9):1901-1910. PubMed ID: 30074758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micromotor Pills as a Dynamic Oral Delivery Platform.
    Karshalev E; Esteban-Fernández de Ávila B; Beltrán-Gastélum M; Angsantikul P; Tang S; Mundaca-Uribe R; Zhang F; Zhao J; Zhang L; Wang J
    ACS Nano; 2018 Aug; 12(8):8397-8405. PubMed ID: 30059616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Viscosity-Based Model for Bubble-Propelled Catalytic Micromotors.
    Wang Z; Chi Q; Liu L; Liu Q; Bai T; Wang Q
    Micromachines (Basel); 2017 Jun; 8(7):. PubMed ID: 30400389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Buoyant force-induced continuous floating and sinking of Janus micromotors.
    Wu M; Koizumi Y; Nishiyama H; Tomita I; Inagi S
    RSC Adv; 2018 Sep; 8(58):33331-33337. PubMed ID: 35548146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hydrodynamics of locomotion at intermediate Reynolds numbers: undulatory swimming in ascidian larvae (Botrylloides sp.).
    McHenry MJ; Azizi E; Strother JA
    J Exp Biol; 2003 Jan; 206(Pt 2):327-43. PubMed ID: 12477902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired zeolitic imidazolate framework (ZIF-8) magnetic micromotors for highly efficient removal of organic pollutants from water.
    Liu J; Li J; Wang G; Yang W; Yang J; Liu Y
    J Colloid Interface Sci; 2019 Nov; 555():234-244. PubMed ID: 31386992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational fluid dynamics analysis of drag and convective heat transfer of individual body segments for different cyclist positions.
    Defraeye T; Blocken B; Koninckx E; Hespel P; Carmeliet J
    J Biomech; 2011 Jun; 44(9):1695-701. PubMed ID: 21497817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Switching Propulsion Mechanisms of Tubular Catalytic Micromotors.
    Wrede P; Medina-Sánchez M; Fomin VM; Schmidt OG
    Small; 2021 Mar; 17(12):e2006449. PubMed ID: 33615690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suction-Cup-Inspired Adhesive Micromotors for Drug Delivery.
    Cai L; Zhao C; Chen H; Fan L; Zhao Y; Qian X; Chai R
    Adv Sci (Weinh); 2022 Jan; 9(1):e2103384. PubMed ID: 34726356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional Biotemplated Micromotors for In Situ Decontamination of Antibiotics and Heavy Metals in Soil and Groundwater.
    Cui H; Wang K; Ma E; Wang H
    Nanomaterials (Basel); 2023 Oct; 13(19):. PubMed ID: 37836351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of DPD transport properties in modeling bioparticle motion under the effect of external forces: Low Reynolds number and high Schmidt scenarios.
    Waheed W; Alazzam A; Al-Khateeb AN; Sung HJ; Abu-Nada E
    J Chem Phys; 2019 Feb; 150(5):054901. PubMed ID: 30736676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.