These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35888953)

  • 1. Design, Characterization, and Liftoff of an Insect-Scale Soft Robotic Dragonfly Powered by Dielectric Elastomer Actuators.
    Chen Y; Arase C; Ren Z; Chirarattananon P
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A High-Lift Micro-Aerial-Robot Powered by Low-Voltage and Long-Endurance Dielectric Elastomer Actuators.
    Ren Z; Kim S; Ji X; Zhu W; Niroui F; Kong J; Chen Y
    Adv Mater; 2022 Feb; 34(7):e2106757. PubMed ID: 34839551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings.
    Maybury WJ; Lehmann FO
    J Exp Biol; 2004 Dec; 207(Pt 26):4707-26. PubMed ID: 15579564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerodynamic Performance of a Dragonfly-Inspired Tandem Wing System for a Biomimetic Micro Air Vehicle.
    Salami E; Montazer E; Ward TA; Nik Ghazali NN; Anjum Badruddin I
    Front Bioeng Biotechnol; 2022; 10():787220. PubMed ID: 35662843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward a Dielectric Elastomer Resonator Driven Flapping Wing Micro Air Vehicle.
    Cao C; Burgess S; Conn AT
    Front Robot AI; 2018; 5():137. PubMed ID: 33501015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyzing the kinematics and longitudinal aerodynamics of a four-wing bionic aircraft.
    Wang L; Shi Z; Geng X; Tong S; Chen Z
    Bioinspir Biomim; 2024 Feb; 19(2):. PubMed ID: 38306675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tandem-wing interactions on aerodynamic performance inspired by dragonfly hovering.
    Peng L; Zheng M; Pan T; Su G; Li Q
    R Soc Open Sci; 2021 Aug; 8(8):202275. PubMed ID: 34457328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forewings match the formation of leading-edge vortices and dominate aerodynamic force production in revolving insect wings.
    Chen D; Kolomenskiy D; Nakata T; Liu H
    Bioinspir Biomim; 2017 Dec; 13(1):016009. PubMed ID: 29052556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fruit fly scale robots can hover longer with flapping wings than with spinning wings.
    Hawkes EW; Lentink D
    J R Soc Interface; 2016 Oct; 13(123):. PubMed ID: 27707903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack.
    Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ
    J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight.
    Wang ZJ; Russell D
    Phys Rev Lett; 2007 Oct; 99(14):148101. PubMed ID: 17930724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Modified Quasisteady Aerodynamic Model for a Sub-100 mg Insect-Inspired Flapping-Wing Robot.
    Wang C; Zhang W; Hu J; Zhao J; Zou Y
    Appl Bionics Biomech; 2020; 2020():8850036. PubMed ID: 33425006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wing kinematics measurement and aerodynamics of a dragonfly in turning flight.
    Li C; Dong H
    Bioinspir Biomim; 2017 Feb; 12(2):026001. PubMed ID: 28059781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic compensation for wing loss in flying damselflies.
    Kassner Z; Dafni E; Ribak G
    J Insect Physiol; 2016 Feb; 85():1-9. PubMed ID: 26598807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerodynamic characteristics along the wing span of a dragonfly
    Hefler C; Qiu H; Shyy W
    J Exp Biol; 2018 Oct; 221(Pt 19):. PubMed ID: 30108128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wing-assisted running robot and implications for avian flight evolution.
    Peterson K; Birkmeyer P; Dudley R; Fearing RS
    Bioinspir Biomim; 2011 Dec; 6(4):046008. PubMed ID: 22004831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerodynamic effects of flexibility in flapping wings.
    Zhao L; Huang Q; Deng X; Sane SP
    J R Soc Interface; 2010 Mar; 7(44):485-97. PubMed ID: 19692394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle.
    Jafferis NT; Helbling EF; Karpelson M; Wood RJ
    Nature; 2019 Jun; 570(7762):491-495. PubMed ID: 31243384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.