These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35889076)

  • 1. Comparative Analysis of Catabolic and Anabolic Dehydroshikimate Dehydratases for 3,4-DHBA Production in
    Shmonova EA; Savrasova EA; Fedorova EN; Doroshenko VG
    Microorganisms; 2022 Jul; 10(7):. PubMed ID: 35889076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the Corynebacterium glutamicum dehydroshikimate dehydratase QsuB and its potential for microbial production of protocatechuic acid.
    Shmonova EA; Voloshina OV; Ovsienko MV; Smirnov SV; Nolde DE; Doroshenko VG
    PLoS One; 2020; 15(8):e0231560. PubMed ID: 32822353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional analysis of AsbF: origin of the stealth 3,4-dihydroxybenzoic acid subunit for petrobactin biosynthesis.
    Pfleger BF; Kim Y; Nusca TD; Maltseva N; Lee JY; Rath CM; Scaglione JB; Janes BK; Anderson EC; Bergman NH; Hanna PC; Joachimiak A; Sherman DH
    Proc Natl Acad Sci U S A; 2008 Nov; 105(44):17133-8. PubMed ID: 18955706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structurally diverse dehydroshikimate dehydratase variants participate in microbial quinate catabolism.
    Peek J; Roman J; Moran GR; Christendat D
    Mol Microbiol; 2017 Jan; 103(1):39-54. PubMed ID: 27706847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protocatechuate overproduction by Corynebacterium glutamicum via simultaneous engineering of native and heterologous biosynthetic pathways.
    Kogure T; Suda M; Hiraga K; Inui M
    Metab Eng; 2021 May; 65():232-242. PubMed ID: 33238211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of a bacterial 3-dehydroshikimate dehydratase (QsuB) reduces lignin and improves biomass saccharification efficiency in switchgrass (Panicum virgatum L.).
    Hao Z; Yogiswara S; Wei T; Benites VT; Sinha A; Wang G; Baidoo EEK; Ronald PC; Scheller HV; Loqué D; Eudes A
    BMC Plant Biol; 2021 Jan; 21(1):56. PubMed ID: 33478381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QuiC2 represents a functionally distinct class of dehydroshikimate dehydratases identified in Listeria species including Listeria monocytogenes.
    Xue K; Prezioso SM; Christendat D
    Environ Microbiol; 2020 Jul; 22(7):2680-2692. PubMed ID: 32190965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational engineering of the shikimate and related pathways in Corynebacterium glutamicum for 4-hydroxybenzoate production.
    Syukur Purwanto H; Kang MS; Ferrer L; Han SS; Lee JY; Kim HS; Lee JH
    J Biotechnol; 2018 Sep; 282():92-100. PubMed ID: 30031819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Protocatechuic Acid Production From Glucose Using
    Örn OE; Sacchetto S; van Niel EWJ; Hatti-Kaul R
    Front Bioeng Biotechnol; 2021; 9():695704. PubMed ID: 34249890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periplasmic dehydroshikimate dehydratase combined with quinate oxidation in Gluconobacter oxydans for protocatechuate production.
    Nagaki K; Kataoka N; Theeragool G; Matsutani M; Ano Y; Matsushita K; Yakushi T
    Biosci Biotechnol Biochem; 2022 Jul; 86(8):1151-1159. PubMed ID: 35675214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of a type II 3-dehydroquinate dehydratase enhances the biotransformation of quinate to 3-dehydroshikimate in Gluconobacter oxydans.
    Nishikura-Imamura S; Matsutani M; Insomphun C; Vangnai AS; Toyama H; Yakushi T; Abe T; Adachi O; Matsushita K
    Appl Microbiol Biotechnol; 2014 Apr; 98(7):2955-63. PubMed ID: 24352733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of a bacterial 3-dehydroshikimate dehydratase reduces lignin content and improves biomass saccharification efficiency.
    Eudes A; Sathitsuksanoh N; Baidoo EE; George A; Liang Y; Yang F; Singh S; Keasling JD; Simmons BA; Loqué D
    Plant Biotechnol J; 2015 Dec; 13(9):1241-50. PubMed ID: 25583257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of a new 3-dehydroshikimate dehydratase from Eupenicillium parvum and its potential for protocatechuic acid production.
    Wei K; Long L; Lin Q; Ding S
    Biosci Biotechnol Biochem; 2022 Jul; 86(8):1024-1030. PubMed ID: 35612974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The missing link in petrobactin biosynthesis: asbF encodes a (-)-3-dehydroshikimate dehydratase.
    Fox DT; Hotta K; Kim CY; Koppisch AT
    Biochemistry; 2008 Nov; 47(47):12251-3. PubMed ID: 18975921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of 3-dehydroshikimate dehydratase, an enzyme in the inducible quinic acid catabolic pathway of Neurospora crassa.
    Strøman P; Reinert WR; Giles NH
    J Biol Chem; 1978 Jul; 253(13):4593-8. PubMed ID: 149131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of an engineered Escherichia coli by a combinatorial strategy to improve 3,4-dihydroxybutyric acid production.
    Liu Y; Mao X; Zhang B; Lin J; Wei D
    Biotechnol Lett; 2021 Oct; 43(10):2035-2043. PubMed ID: 34448097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of the Escherichia coli catabolic threonine dehydratase in Corynebacterium glutamicum and its effect on isoleucine production.
    Guillouet S; Rodal AA; An G; Lessard PA; Sinskey AJ
    Appl Environ Microbiol; 1999 Jul; 65(7):3100-7. PubMed ID: 10388709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-planta production of the biodegradable polyester precursor 2-pyrone-4,6-dicarboxylic acid (PDC): Stacking reduced biomass recalcitrance with value-added co-product.
    Lin CY; Vuu KM; Amer B; Shih PM; Baidoo EEK; Scheller HV; Eudes A
    Metab Eng; 2021 Jul; 66():148-156. PubMed ID: 33895365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-throughput visual screening method for p-hydroxybenzoate hydroxylase to increase phenolic compounds biosynthesis.
    Chen Z; Chen T; Yu S; Huo YX
    Biotechnol Biofuels Bioprod; 2022 May; 15(1):43. PubMed ID: 35501924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial synthesis of pyrogallol using genetically engineered Escherichia coli.
    Wang J; Shen X; Yuan Q; Yan Y
    Metab Eng; 2018 Jan; 45():134-141. PubMed ID: 29247864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.