These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35889576)

  • 1. Enhanced Spin Thermopower in Phosphorene Nanoribbons via Edge-State Modifications.
    Ou J; Zhang Q
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorene nanoribbon as a promising candidate for thermoelectric applications.
    Zhang J; Liu HJ; Cheng L; Wei J; Liang JH; Fan DD; Shi J; Tang XF; Zhang QJ
    Sci Rep; 2014 Sep; 4():6452. PubMed ID: 25245326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Even-odd effect of spin-dependent transport and thermoelectric properties for ferromagnetic zigzag phosphorene nanoribbons under an electric field.
    Zhou B; Yuan J; Zhou X; Zhou B
    J Phys Condens Matter; 2020 Aug; 32(43):. PubMed ID: 32668426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoelectric properties of doped graphene nanoribbons: density functional theory calculations and electrical transport.
    Rahmati E; Bafekry A; Faraji M; Gogva D; Nguyen CV; Ghergherehchi M
    RSC Adv; 2022 Feb; 12(10):6174-6180. PubMed ID: 35424535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Half-metallicity in zigzag phosphorene nanoribbons with magnetic edges.
    Krompiewski S
    Nanotechnology; 2018 Sep; 29(38):385204. PubMed ID: 29972143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The spin-dependent Seebeck effect and the charge and spin figure of merit in a hybrid structure of single-walled carbon nanotubes and zigzag-edge graphene nanoribbons.
    Ye XM; Tang XQ; Tan XY; Ren DH
    Phys Chem Chem Phys; 2018 Jul; 20(29):19424-19429. PubMed ID: 29992219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generating pure spin current with spin-dependent Seebeck effect in ferromagnetic zigzag graphene nanoribbons.
    Zhou Y; Zheng X
    J Phys Condens Matter; 2019 Aug; 31(31):315301. PubMed ID: 31022711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical control of the spin-Seebeck coefficient in graphene nanoribbons with asymmetric zigzag edge extensions.
    Mazhari Mousavi F; Farghadan R
    Phys Chem Chem Phys; 2022 Nov; 24(44):27195-27203. PubMed ID: 36321483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin caloritronics of blue phosphorene nanoribbons.
    Liu YS; Zhang X; Yang XF; Hong XK; Feng JF; Si MS; Wang XF
    Phys Chem Chem Phys; 2015 Apr; 17(16):10462-7. PubMed ID: 25801010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum confinement and edge effects on electronic properties of zigzag green phosphorene nanoribbons.
    Ma C; Ma T; Peng X
    J Phys Condens Matter; 2020 Apr; 32(17):175301. PubMed ID: 31914431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zigzag nanoribbons of two-dimensional silicene-like crystals: magnetic, topological and thermoelectric properties.
    Wierzbicki M; Barnaś J; Swirkowicz R
    J Phys Condens Matter; 2015 Dec; 27(48):485301. PubMed ID: 26565114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin effects in thermoelectric phenomena in SiC nanoribbons.
    Zberecki K; Swirkowicz R; Wierzbicki M; Barnaś J
    Phys Chem Chem Phys; 2015 Jan; 17(3):1925-33. PubMed ID: 25473937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin-dependent thermoelectric transport properties of Cr-doped blue phosphorene.
    Shi HL; Yang J; Han QZ; Ren YH; Zhao YH; He SY; Gong LJ; Jiang ZT
    Nanotechnology; 2023 Jun; 34(37):. PubMed ID: 37311437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exchange and electric fields enhanced spin thermoelectric performance of germanene nano-ribbon.
    Zheng J; Chi F; Guo Y
    J Phys Condens Matter; 2015 Jul; 27(29):295302. PubMed ID: 26139695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric dynamics of edge exchange spin waves in honeycomb nanoribbons with zigzag and bearded edge boundaries.
    Ghader D; Khater A
    Sci Rep; 2019 Apr; 9(1):6290. PubMed ID: 31000811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced thermoelectric efficiency in ferromagnetic silicene nanoribbons terminated with hydrogen atoms.
    Zberecki K; Swirkowicz R; Wierzbicki M; Barnaś J
    Phys Chem Chem Phys; 2014 Jul; 16(25):12900-8. PubMed ID: 24848750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-controlled colossal magnetoresistance and perfect spin Seebeck effect in hybrid graphene/boron nitride nanoribbons.
    Zhu L; Li R; Yao K
    Phys Chem Chem Phys; 2017 Feb; 19(5):4085-4092. PubMed ID: 28111668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of thermoelectric performance of a nanoribbon made ofα-T3lattice.
    Alam MW; Souayeh B; Islam SF
    J Phys Condens Matter; 2019 Sep; 31(48):. PubMed ID: 31489844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The spin-polarized edge states of blue phosphorene nanoribbons induced by electric field and electron doping.
    Zhang S; Li Y; Wang YP; Li J; Li M; Long M
    J Phys Condens Matter; 2021 Mar; 33(10):105302. PubMed ID: 33237880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum transport through the edge states of zigzag phosphorene nanoribbons in presence of a single point defect: analytic Green's function method.
    Amini M; Soltani M
    J Phys Condens Matter; 2019 May; 31(21):215301. PubMed ID: 30794998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.