These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 35889607)
1. Effective Conductivity of Carbon-Nanotube-Filled Systems by Interfacial Conductivity to Optimize Breast Cancer Cell Sensors. Zare Y; Rhee KY; Park SJ Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889607 [TBL] [Abstract][Full Text] [Related]
2. Modeling the effect of interfacial conductivity between polymer matrix and carbon nanotubes on the electrical conductivity of nanocomposites. Zare Y; Rhee KY RSC Adv; 2019 Dec; 10(1):424-433. PubMed ID: 35492511 [TBL] [Abstract][Full Text] [Related]
3. Simulation of Percolation Threshold, Tunneling Distance, and Conductivity for Carbon Nanotube (CNT)-Reinforced Nanocomposites Assuming Effective CNT Concentration. Zare Y; Rhee KY Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31948024 [TBL] [Abstract][Full Text] [Related]
4. Calculation of the Electrical Conductivity of Polymer Nanocomposites Assuming the Interphase Layer Surrounding Carbon Nanotubes. Zare Y; Rhee KY Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32053949 [TBL] [Abstract][Full Text] [Related]
5. Predicting the electrical conductivity in polymer carbon nanotube nanocomposites based on the volume fractions and resistances of the nanoparticle, interphase, and tunneling regions in conductive networks. Liu Z; Peng W; Zare Y; Hui D; Rhee KY RSC Adv; 2018 May; 8(34):19001-19010. PubMed ID: 35539634 [TBL] [Abstract][Full Text] [Related]
6. Electron tunneling in carbon nanotube composites. Gau C; Kuo CY; Ko HS Nanotechnology; 2009 Sep; 20(39):395705. PubMed ID: 19724108 [TBL] [Abstract][Full Text] [Related]
7. Thermal Conductivity of Polyamide-6,6/Carbon Nanotube Composites: Effects of Tube Diameter and Polymer Linkage between Tubes. Keshtkar M; Mehdipour N; Eslami H Polymers (Basel); 2019 Sep; 11(9):. PubMed ID: 31500250 [TBL] [Abstract][Full Text] [Related]
8. Numerical and experimental study of radiation induced conductivity change of carbon nanotube filled polymers. Liu F; Sun Y; Sun W; Sun Z; Yeow JTW Nanotechnology; 2017 Jun; 28(25):255501. PubMed ID: 28452336 [TBL] [Abstract][Full Text] [Related]
9. Computational Micromechanics Investigation of Percolation and Effective Electro-Mechanical Properties of Carbon Nanotube/Polymer Nanocomposites using Stochastically Generated Realizations: Effects of Orientation and Waviness. Talamadupula KK; Seidel G Polymers (Basel); 2022 Nov; 14(23):. PubMed ID: 36501489 [TBL] [Abstract][Full Text] [Related]
10. Polymer Composite Containing Carbon Nanotubes and their Applications. Park SH; Bae J Recent Pat Nanotechnol; 2017 Jul; 11(2):109-115. PubMed ID: 27978788 [TBL] [Abstract][Full Text] [Related]
11. The effect of carbon nanotube chirality on the electrical conductivity of polymer nanocomposites considering tunneling resistance. Doh J; Park SI; Yang Q; Raghavan N Nanotechnology; 2019 Nov; 30(46):465701. PubMed ID: 31476136 [TBL] [Abstract][Full Text] [Related]
12. Influences of defective interphase and contact region among nanosheets on the electrical conductivity of polymer graphene nanocomposites. Zare Y; Munir MT; Rhee KY Sci Rep; 2024 Jun; 14(1):13210. PubMed ID: 38851801 [TBL] [Abstract][Full Text] [Related]
13. A subbands study on the resistivity of field-effect CNT-based piezoresistive nanocomposites. Haghgoo M; Ansari R; Hassanzadeh-Aghdam MK; Jamali J Nanotechnology; 2024 May; 35(32):. PubMed ID: 38740007 [TBL] [Abstract][Full Text] [Related]
14. Progressing of a power model for electrical conductivity of graphene-based composites. Zare Y; Rhee KY; Park SJ Sci Rep; 2023 Jan; 13(1):1596. PubMed ID: 36709238 [TBL] [Abstract][Full Text] [Related]
15. A novel approach to predict the electrical conductivity of nanocomposites by a weak interphase around graphene network. Zare Y; Munir MT; Rhee KY Sci Rep; 2024 Sep; 14(1):21514. PubMed ID: 39277704 [TBL] [Abstract][Full Text] [Related]
16. Double Percolation of Poly(lactic acid)/Low-Density Polyethylene/Carbon Nanotube (PLA/LDPE/CNT) Composites for Force-Sensor Application: Impact of Preferential Localization and Mixing Sequence. Kajornprai T; Jarapanyacheep R; Saikaeo J; Pojprapai S; Jarukumjorn K; Trongsatitkul T Polymers (Basel); 2024 Jul; 16(13):. PubMed ID: 39000761 [TBL] [Abstract][Full Text] [Related]
17. Theoretical Prediction of Electrical Conductivity Percolation of Poly(lactic acid)-Carbon Nanotube Composites in DC and RF Regime. Beltrán FR; Aksas H; Sidi Salah L; Danlée Y; Huynen I Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570060 [TBL] [Abstract][Full Text] [Related]
18. Tuning the Network Structure in Poly(vinylidene fluoride)/Carbon Nanotube Nanocomposites Using Carbon Black: Toward Improvements of Conductivity and Piezoresistive Sensitivity. Ke K; Pötschke P; Wiegand N; Krause B; Voit B ACS Appl Mater Interfaces; 2016 Jun; 8(22):14190-9. PubMed ID: 27171017 [TBL] [Abstract][Full Text] [Related]
19. Advancement of the Power-Law Model and Its Percolation Exponent for the Electrical Conductivity of a Graphene-Containing System as a Component in the Biosensing of Breast Cancer. Zare Y; Rhee KY; Park SJ Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956571 [TBL] [Abstract][Full Text] [Related]
20. Effect of surfactants and manufacturing methods on the electrical and thermal conductivity of carbon nanotube/silicone composites. Vilčáková J; Moučka R; Svoboda P; Ilčíková M; Kazantseva N; Hřibová M; Mičušík M; Omastová M Molecules; 2012 Nov; 17(11):13157-74. PubMed ID: 23128093 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]