BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35890508)

  • 1. Ecological Niche Modeling of Water Lily (
    Nzei JM; Mwanzia VM; Ngarega BK; Musili PM; Wang QF; Chen JM; Li ZZ
    Plants (Basel); 2022 Jul; 11(14):. PubMed ID: 35890508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the potential suitable habitats of genus Nymphaea in India using MaxEnt modeling.
    Parveen S; Kaur S; Baishya R; Goel S
    Environ Monit Assess; 2022 Oct; 194(12):853. PubMed ID: 36203117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Niche modeling for the genus
    Rej JE; Joyner TA
    PeerJ; 2018; 6():e6128. PubMed ID: 30588407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential impacts of climate change on habitat suitability for the Queensland fruit fly.
    Sultana S; Baumgartner JB; Dominiak BC; Royer JE; Beaumont LJ
    Sci Rep; 2017 Oct; 7(1):13025. PubMed ID: 29026169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the habitat suitability of the invasive white mango scale, Aulacaspis tubercularis; Newstead, 1906 (Hemiptera: Diaspididae) using bioclimatic variables.
    Azrag AG; Mohamed SA; Ndlela S; Ekesi S
    Pest Manag Sci; 2022 Oct; 78(10):4114-4126. PubMed ID: 35657692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climatic niche evolution and niche conservatism of Nymphaea species in Africa, South America, and Australia.
    Nzei JM; Martínez-Médez N; Mwanzia VM; Kurauka JK; Wang QF; Li ZZ; Chen JM
    BMC Plant Biol; 2024 May; 24(1):476. PubMed ID: 38816799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Habitat suitability, range dynamics, and threat assessment of Swertia petiolata D. Don: a Himalayan endemic medicinally important plant under climate change.
    Wani BA; Wani SA; Magray JA; Ahmad R; Ganie AH; Nawchoo IA
    Environ Monit Assess; 2022 Dec; 195(1):214. PubMed ID: 36538137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the potential distribution of Amblyomma americanum (Acari: Ixodidae) infestation in New Zealand, using maximum entropy-based ecological niche modelling.
    Raghavan RK; Heath ACG; Lawrence KE; Ganta RR; Peterson AT; Pomroy WE
    Exp Appl Acarol; 2020 Feb; 80(2):227-245. PubMed ID: 31965414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of climate change on the current and future distribution of threatened species of the genus Lessingianthus (Vernonieae: Asteraceae) from the Brazilian Cerrado.
    Angulo MB; Via DO Pico G; Dematteis M
    An Acad Bras Cienc; 2021; 93(2):e20190796. PubMed ID: 34190841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate change risks, extinction debt, and conservation implications for a threatened freshwater fish: Carmine shiner (Notropis percobromus).
    Pandit SN; Maitland BM; Pandit LK; Poesch MS; Enders EC
    Sci Total Environ; 2017 Nov; 598():1-11. PubMed ID: 28433817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impacts of climate change on high priority fruit fly species in Australia.
    Sultana S; Baumgartner JB; Dominiak BC; Royer JE; Beaumont LJ
    PLoS One; 2020; 15(2):e0213820. PubMed ID: 32053591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecological analysis and environmental niche modelling of
    Wani IA; Verma S; Mushtaq S; Alsahli AA; Alyemeni MN; Tariq M; Pant S
    Saudi J Biol Sci; 2021 Apr; 28(4):2109-2122. PubMed ID: 33911927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the potential distribution of the parasitic Cuscuta chinensis under global warming.
    Ren Z; Zagortchev L; Ma J; Yan M; Li J
    BMC Ecol; 2020 May; 20(1):28. PubMed ID: 32386506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Historical and future climate change fosters expansion of Australian harvester termites, Drepanotermes.
    Heimburger B; Maurer SS; Schardt L; Scheu S; Hartke TR
    Evolution; 2022 Sep; 76(9):2145-2161. PubMed ID: 35842838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting habitat suitability and range shifts under projected climate change for two octocorals in the north-east Atlantic.
    Jenkins TL; Stevens JR
    PeerJ; 2022; 10():e13509. PubMed ID: 35651748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling potential distribution of newly recorded ant, Brachyponera nigrita using Maxent under climate change in Pothwar region, Pakistan.
    Gull E Fareen A; Mahmood T; Bodlah I; Rashid A; Khalid A; Mahmood S
    PLoS One; 2022; 17(1):e0262451. PubMed ID: 35045121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anticipated climate and land-cover changes reveal refuge areas for Borneo's orang-utans.
    Struebig MJ; Fischer M; Gaveau DL; Meijaard E; Wich SA; Gonner C; Sykes R; Wilting A; Kramer-Schadt S
    Glob Chang Biol; 2015 Aug; 21(8):2891-904. PubMed ID: 25559092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decline in the suitable habitat of dominant Abies species in response to climate change in the Hindu Kush Himalayan region: insights from species distribution modelling.
    Malik RA; Reshi ZA; Rafiq I; Singh SP
    Environ Monit Assess; 2022 Jul; 194(9):596. PubMed ID: 35861887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction in the potential distribution of bumble bees (Apidae: Bombus) in Mesoamerica under different climate change scenarios: Conservation implications.
    Martínez-López O; Koch JB; Martínez-Morales MA; Navarrete-Gutiérrez D; Enríquez E; Vandame R
    Glob Chang Biol; 2021 May; 27(9):1772-1787. PubMed ID: 33595918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the potential distribution of Dactylorhiza hatagirea (D. Don) Soo-an important medicinal orchid in the West Himalaya, under multiple climate change scenarios.
    Singh L; Kanwar N; Bhatt ID; Nandi SK; Bisht AK
    PLoS One; 2022; 17(6):e0269673. PubMed ID: 35714160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.