BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35890610)

  • 21. Froth Flotation of Chalcopyrite/Pyrite Ore: A Critical Review.
    Castellón CI; Toro N; Gálvez E; Robles P; Leiva WH; Jeldres RI
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233879
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hetero-difunctional Reagent with Superior Flotation Performance to Chalcopyrite and the Associated Surface Interaction Mechanism.
    Liu S; Xie L; Liu G; Zhong H; Wang Y; Zeng H
    Langmuir; 2019 Mar; 35(12):4353-4363. PubMed ID: 30802069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New insights into the beneficial roles of dispersants in reducing negative influence of Mg
    Li Y; Yang X; Fu J; Li W; Hu C
    RSC Adv; 2020 Jul; 10(46):27401-27406. PubMed ID: 35516951
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Utilization and Mechanisms of Tannic Acid as a Depressant for Chalcopyrite and Pyrite Separation.
    Sun D; Li M; Zhang M; Cui R; Yang Z; Yu L; Wang D; Yao W
    ACS Omega; 2023 Aug; 8(33):30474-30482. PubMed ID: 37636951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of Galvanic Interaction between the Iron Grinding Medium and Chalcopyrite on Collectorless Flotation Behavior of Chalcopyrite: Experimental and Density Functional Theory Study.
    Zhu H; Ke B; Lei L; Feng H; Wan J; Shen Z
    Langmuir; 2024 Jan; 40(1):462-473. PubMed ID: 38154132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heterocoagulation of chalcopyrite and pyrite minerals in flotation separation.
    Mitchell TK; Nguyen AV; Evans GM
    Adv Colloid Interface Sci; 2005 Jun; 114-115():227-37. PubMed ID: 15894282
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of chalcopyrite removal from low-grade molybdenite using response surface methodology and its effect on molybdenum trioxide morphology by roasting.
    Behmadi R; Mirzaei M; Afshar MR; Najafi H
    RSC Adv; 2023 May; 13(22):14899-14913. PubMed ID: 37197182
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular Dynamics Simulations of the Interactions between a Hydrolyzed Polyacrylamide with the Face and Edge Surfaces of Molybdenite.
    Echeverry-Vargas L; Estrada D; Gutierrez L
    Polymers (Basel); 2022 Sep; 14(17):. PubMed ID: 36080754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective adsorption of a high-performance depressant onto dolomite causing effective flotation separation of magnesite from dolomite.
    Yang B; Wang D; Cao S; Yin W; Xue J; Zhu Z; Fu Y; Yao J
    J Colloid Interface Sci; 2020 Oct; 578():290-303. PubMed ID: 32531559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective separation of pyrite and chalcopyrite by biomodulation.
    Chandraprabha MN; Natarajan KA; Modak JM
    Colloids Surf B Biointerfaces; 2004 Sep; 37(3-4):93-100. PubMed ID: 15342018
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface Mechanism of Fe
    Zheng Q; Qian Y; Zou D; Wang Z; Bai Y; Dai H
    Front Chem; 2021; 9():700347. PubMed ID: 34368081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adsorption Mechanism of 4-Amino-5-mercapto-1,2,4-triazole as Flotation Reagent on Chalcopyrite.
    Yin Z; Hu Y; Sun W; Zhang C; He J; Xu Z; Zou J; Guan C; Zhang C; Guan Q; Lin S; Khoso SA
    Langmuir; 2018 Apr; 34(13):4071-4083. PubMed ID: 29489383
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioleaching of copper sulfide minerals assisted by microbial fuel cells.
    Huang T; Wei X; Zhang S
    Bioresour Technol; 2019 Sep; 288():121561. PubMed ID: 31152952
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anisotropic Polymer Adsorption on Molybdenite Basal and Edge Surfaces and Interaction Mechanism With Air Bubbles.
    Xie L; Wang J; Huang J; Cui X; Wang X; Liu Q; Zhang H; Liu Q; Zeng H
    Front Chem; 2018; 6():361. PubMed ID: 30211150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of molecular assembly between collectors and inhibitors on the flotation of pyrite and talc.
    Long T; Xiao W; Yang W
    R Soc Open Sci; 2019 Oct; 6(10):191133. PubMed ID: 31824721
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Utilization of Phytic Acid as a Selective Depressant for Quartz Activated by Zinc Ions in Smithsonite Flotation.
    Wang M; Jin S
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carboxymethylcellulose adsorption on molybdenite: the effect of electrolyte composition on adsorption, bubble-surface collisions, and flotation.
    Kor M; Korczyk PM; Addai-Mensah J; Krasowska M; Beattie DA
    Langmuir; 2014 Oct; 30(40):11975-84. PubMed ID: 25232682
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of humic substances in froth flotation processes.
    Reyes-Bozo L; Vyhmeister E; Godoy-Faúndez A; Higueras P; Fúnez-Guerra C; Valdés-González H; Salazar JL; Herrera-Urbina R
    J Environ Manage; 2019 Dec; 252():109699. PubMed ID: 31614260
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorption of modified dextrins on molybdenite: AFM imaging, contact angle, and flotation studies.
    Beaussart A; Parkinson L; Mierczynska-Vasilev A; Beattie DA
    J Colloid Interface Sci; 2012 Feb; 368(1):608-15. PubMed ID: 22137169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Impact of Residual Dispersant on the Flocculation and Sedimentation of Synthetic Tailings in Seawater.
    Yepsen R; Gutiérrez L; Toledo PG
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.