BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35890641)

  • 1. The Effect of Electrical Polarity on the Diameter of Biobased Polybutylene Succinate Fibers during Melt Electrospinning.
    Ostheller ME; Balakrishnan NK; Groten R; Seide G
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pilot-Scale Melt Electrospinning of Polybutylene Succinate Fiber Mats for a Biobased and Biodegradable Face Mask.
    Ostheller ME; Balakrishnan NK; Beukenberg K; Groten R; Seide G
    Polymers (Basel); 2023 Jul; 15(13):. PubMed ID: 37447581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detailed Process Analysis of Biobased Polybutylene Succinate Microfibers Produced by Laboratory-Scale Melt Electrospinning.
    Ostheller ME; Balakrishnan NK; Groten R; Seide G
    Polymers (Basel); 2021 Mar; 13(7):. PubMed ID: 33810218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Curcumin and Silver Doping Enhance the Spinnability and Antibacterial Activity of Melt-Electrospun Polybutylene Succinate Fibers.
    Ostheller ME; Abdelgawad AM; Balakrishnan NK; Hassanin AH; Groten R; Seide G
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pilot-Scale Electrospinning of PLA Using Biobased Dyes as Multifunctional Additives.
    Balakrishnan NK; Ostheller ME; Aldeghi N; Schmitz C; Groten R; Seide G
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35893953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Dye and Pigment Concentrations on the Diameter of Melt-Electrospun Polylactic Acid Fibers.
    Balakrishnan NK; Koenig K; Seide G
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33050563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biobased Dyes as Conductive Additives to Reduce the Diameter of Polylactic Acid Fibers during Melt Electrospinning.
    Koenig K; Balakrishnan N; Hermanns S; Langensiepen F; Seide G
    Materials (Basel); 2020 Feb; 13(5):. PubMed ID: 32120806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new prototype melt-electrospinning device for the production of biobased thermoplastic sub-microfibers and nanofibers.
    Koenig K; Beukenberg K; Langensiepen F; Seide G
    Biomater Res; 2019; 23():10. PubMed ID: 30976458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melt Electrospinning of Nanofibers from Medical-Grade Poly(ε-Caprolactone) with a Modified Nozzle.
    Großhaus C; Bakirci E; Berthel M; Hrynevich A; Kade JC; Hochleitner G; Groll J; Dalton PD
    Small; 2020 Nov; 16(44):e2003471. PubMed ID: 33048431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-Controllable Melt-Electrospun Polycaprolactone (PCL) Fibers with a Sodium Chloride Additive.
    Piyasin P; Yensano R; Pinitsoontorn S
    Polymers (Basel); 2019 Oct; 11(11):. PubMed ID: 31717880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melt-Electrospun Polyethylene Nanofiber Obtained from Polyethylene/Polyvinyl Butyral Blend Film.
    Zakaria M; Shibahara K; Nakane K
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32079096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Polybutylene Succinate Additive in Polylactic Acid Blend Fibers via a Melt-Blown Process.
    Tangnorawich B; Magmee A; Roungpaisan N; Toommee S; Parcharoen Y; Pechyen C
    Molecules; 2023 Oct; 28(20):. PubMed ID: 37894694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melt Electrospinning of PET and Composite PET-Aerogel Fibers: An Experimental and Modeling Study.
    Christiansen L; Gurevich L; Wang D; Fojan P
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Six Processing Parameters on the Size of PCL Fibers Prepared by Melt Electrospinning Writing.
    Xie Y; Fang Q; Zhao H; Li Y; Lin Z; Chen J
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bubble Melt Electrospinning for Production of Polymer Microfibers.
    Li YM; Wang XX; Yu SX; Zhao YT; Yan X; Zheng J; Yu M; Yan SY; Long YZ
    Polymers (Basel); 2018 Nov; 10(11):. PubMed ID: 30961171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of microfibrous and nano-/microfibrous scaffolds: melt and hybrid electrospinning and surface modification of poly(L-lactic acid) with plasticizer.
    Yoon YI; Park KE; Lee SJ; Park WH
    Biomed Res Int; 2013; 2013():309048. PubMed ID: 24381937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun Fibers of Polybutylene Succinate/Graphene Oxide Composite for Syringe-Push Protein Absorption Membrane.
    Sathirapongsasuti N; Panaksri A; Boonyagul S; Chutipongtanate S; Tanadchangsaeng N
    Polymers (Basel); 2021 Jun; 13(13):. PubMed ID: 34206523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Preparation of Cyclic Butylene Terephthalate Fibers with Novel Morphology Based on Melt Electrospinning.
    Zhou B; Li L; Guo L; Chen L; Dong B; Zhu C; Hao D; Hao X
    J Nanosci Nanotechnol; 2019 May; 19(5):3012-3015. PubMed ID: 30501813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Melt-Blown Processing Conditions on Nonwoven Polylactic Acid and Polybutylene Succinate.
    Pratumpong P; Cholprecha T; Roungpaisan N; Srisawat N; Toommee S; Pechyen C; Parcharoen Y
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of Electrical Polarity in Electrospinning and on the Mechanical and Structural Properties of As-Spun Fibers.
    Ura DP; Rosell-Llompart J; Zaszczyńska A; Vasilyev G; Gradys A; Szewczyk PK; Knapczyk-Korczak J; Avrahami R; Šišková AO; Arinstein A; Sajkiewicz P; Zussman E; Stachewicz U
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32961759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.