These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35890679)

  • 1. An Analytical Model for Cure-Induced Deformation of Composite Laminates.
    Peng X; Xu J; Cheng Y; Zhang L; Yang J; Li Y
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Process-Induced Stress and Deformation of Variable-Stiffness Composite Cylinders during Curing.
    Zhang G; Wang J; Ni A
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30646610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical Analysis of Curing Residual Stress and Deformation in Thermosetting Composite Laminates with Comparison between Different Constitutive Models.
    Dai J; Xi S; Li D
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30769850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Improved Analytical Solution for Process-Induced Residual Stresses and Deformations in Flat Composite Laminates Considering Thermo-Viscoelastic Effects.
    Liu C; Shi Y
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30544697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling of Process-Induced Deformation for Composite Parts Considering Tool-Part Interaction.
    Qiao W; Yao W
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33050654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Thermo-Chemo-Mechanical Coupled Curing Analysis for the Filament Wound Composite Shell.
    Lu L; Huan S; Lu M; Shen T; Tian Y; Hu J; Du J; Zhang M
    Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38931993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deformation of Composite Laminates Induced by Surface Bonded and Embedded Piezoelectric Actuators.
    Her SC; Chen HY
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32709163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and Energy-Efficient Frontal Curing of Multifunctional Composites Using Integrated Nanostructured Heaters.
    Naseri I; Yourdkhani M
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36226889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Objective Optimisation of Curing Cycle of Thick Aramid Fibre/Epoxy Composite Laminates.
    Zhang G; Luo L; Lin T; Zhang B; Wang H; Qu Y; Meng B
    Polymers (Basel); 2021 Nov; 13(23):. PubMed ID: 34883574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Objective Optimization of Curing Profile for Autoclave Processed Composites: Simultaneous Control of Curing Time and Process-Induced Defects.
    Tang W; Xu Y; Hui X; Zhang W
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical Analysis of Micro-Residual Stresses in a Carbon/Epoxy Polymer Matrix Composite during Curing Process.
    Gonçalves PT; Arteiro A; Rocha N; Pina L
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Study on the Optimization of the Autoclave Curing Cycle for the Enhancement of the Mechanical Properties of Prepreg Carbon-Epoxy Laminates.
    Rusnáková S; Grunt M; Žaludek M; Javořík J; Kotlánová B
    Polymers (Basel); 2023 Dec; 16(1):. PubMed ID: 38201712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and Numerical Study of Healing Effect on Delamination Defect in Infusible Thermoplastic Composite Laminates.
    Griskevicius P; Spakauskas K; Mahato S; Grigaliunas V; Raisutis R; Eidukynas D; Perkowski DM; Vilkauskas A
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical Simulation of Thermoplastic Composite Fiber Variable-Angle Laminates.
    Cao Z; Guo D; Fu H; Han Z
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curing-light intensity and depth of cure of resin-based composites tested according to international standards.
    Fan PL; Schumacher RM; Azzolin K; Geary R; Eichmiller FC
    J Am Dent Assoc; 2002 Apr; 133(4):429-34; quiz 491-3. PubMed ID: 11991459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring the Mechanical Properties of Glass Fiber Reinforcement Polymer Composite Laminates Obtained by Different Fabrication Processes.
    Lai J; Zhang X; Zhang X
    J Vis Exp; 2023 Jun; (196):. PubMed ID: 37458467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Curing potential of experimental resin composites with systematically varying amount of bioactive glass: Degree of conversion, light transmittance and depth of cure.
    Par M; Spanovic N; Bjelovucic R; Skenderovic H; Gamulin O; Tarle Z
    J Dent; 2018 Aug; 75():113-120. PubMed ID: 29908899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface Controlled Micro- and Macro-Mechanical Properties of Vibration Processed Carbon Fiber/Epoxy Composites.
    Yang X; Zhan L; Peng Y; Liu C; Xiong R
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermo-Chemo-Mechanical Modeling of Residual Stress in Unidirectional Carbon Fiber-Reinforced Polymers during Manufacture.
    Bao R; Liu J; Xiao Z; Joshi SC
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depth of cure and microleakage with high-intensity and ramped resin-based composite curing lights.
    Jain P; Pershing A
    J Am Dent Assoc; 2003 Sep; 134(9):1215-23. PubMed ID: 14528993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.