These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35890691)

  • 61. Enhanced in vivo Magnetic Resonance Imaging of Tumors by PEGylated Iron-Oxide-Gold Core-Shell Nanoparticles with Prolonged Blood Circulation Properties.
    Kumagai M; Sarma TK; Cabral H; Kaida S; Sekino M; Herlambang N; Osada K; Kano MR; Nishiyama N; Kataoka K
    Macromol Rapid Commun; 2010 Sep; 31(17):1521-8. PubMed ID: 21567561
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Enhancement of gas-filled microbubble R2* by iron oxide nanoparticles for MRI.
    Chow AM; Chan KW; Cheung JS; Wu EX
    Magn Reson Med; 2010 Jan; 63(1):224-9. PubMed ID: 19953509
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Targeted NIRF/MR dual-mode imaging of breast cancer brain metastasis using BRBP1-functionalized ultra-small iron oxide nanoparticles.
    Du J; Zhang Y; Jin Z; Wu H; Cang J; Shen Y; Miao F; Zhang A; Zhang Y; Zhang J; Teng G
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111188. PubMed ID: 32806329
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A pH-Responsive Yolk-Like Nanoplatform for Tumor Targeted Dual-Mode Magnetic Resonance Imaging and Chemotherapy.
    Sun X; Du R; Zhang L; Zhang G; Zheng X; Qian J; Tian X; Zhou J; He J; Wang Y; Wu Y; Zhong K; Cai D; Zou D; Wu Z
    ACS Nano; 2017 Jul; 11(7):7049-7059. PubMed ID: 28665575
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent.
    Yue-Jian C; Juan T; Fei X; Jia-Bi Z; Ning G; Yi-Hua Z; Ye D; Liang G
    Drug Dev Ind Pharm; 2010 Oct; 36(10):1235-44. PubMed ID: 20818962
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A Radio-Nano-Platform for T1/T2 Dual-Mode PET-MR Imaging.
    Gholami YH; Yuan H; Wilks MQ; Maschmeyer R; Normandin MD; Josephson L; El Fakhri G; Kuncic Z
    Int J Nanomedicine; 2020; 15():1253-1266. PubMed ID: 32161456
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Magnetic resonance imaging of tumor angiogenesis using dual-targeting RGD10-NGR9 ultrasmall superparamagnetic iron oxide nanoparticles.
    Wu T; Ding X; Su B; Soodeen-Lalloo AK; Zhang L; Shi JY
    Clin Transl Oncol; 2018 May; 20(5):599-606. PubMed ID: 28956266
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents.
    Kim BH; Lee N; Kim H; An K; Park YI; Choi Y; Shin K; Lee Y; Kwon SG; Na HB; Park JG; Ahn TY; Kim YW; Moon WK; Choi SH; Hyeon T
    J Am Chem Soc; 2011 Aug; 133(32):12624-31. PubMed ID: 21744804
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging.
    Hannah A; Luke G; Wilson K; Homan K; Emelianov S
    ACS Nano; 2014 Jan; 8(1):250-9. PubMed ID: 24303934
    [TBL] [Abstract][Full Text] [Related]  

  • 70. In Vivo Dual-Modality Fluorescence and Magnetic Resonance Imaging-Guided Lymph Node Mapping with Good Biocompatibility Manganese Oxide Nanoparticles.
    Zhan Y; Zhan W; Li H; Xu X; Cao X; Zhu S; Liang J; Chen X
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29231865
    [TBL] [Abstract][Full Text] [Related]  

  • 71. PEGylated Bilirubin-coated Iron Oxide Nanoparticles as a Biosensor for Magnetic Relaxation Switching-based ROS Detection in Whole Blood.
    Lee DY; Kang S; Lee Y; Kim JY; Yoo D; Jung W; Lee S; Jeong YY; Lee K; Jon S
    Theranostics; 2020; 10(5):1997-2007. PubMed ID: 32104497
    [No Abstract]   [Full Text] [Related]  

  • 72. Controlled assembly of magnetic nanoparticles on microbubbles for multimodal imaging.
    Duan L; Yang F; Song L; Fang K; Tian J; Liang Y; Li M; Xu N; Chen Z; Zhang Y; Gu N
    Soft Matter; 2015 Jul; 11(27):5492-500. PubMed ID: 26061750
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Characterization of Fe3O4/SiO2/Gd2O(CO3)2 core/shell/shell nanoparticles as T1 and T2 dual mode MRI contrast agent.
    Yang M; Gao L; Liu K; Luo C; Wang Y; Yu L; Peng H; Zhang W
    Talanta; 2015 Jan; 131():661-5. PubMed ID: 25281156
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Synthesis and Application of Fe
    Keshtkar M; Shahbazi-Gahrouei D; Mahmoudabadi A
    J Med Signals Sens; 2020; 10(3):201-207. PubMed ID: 33062612
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ultrasmall Fe@Fe
    Liu D; Li J; Wang C; An L; Lin J; Tian Q; Yang S
    Nanomedicine; 2021 Feb; 32():102335. PubMed ID: 33220508
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Ultrasound and magnetic resonance imaging of cyclic arginine glycine aspartic acid-gadopentetic acid-polylactic acid in human breast cancer by targeting αvβ3 in xenograft-bearing nude mice.
    Fu D; Huang X; Lv Z; Zhang Y; Chen M; Zhang W; Su D
    Bioengineered; 2022 Mar; 13(3):7105-7117. PubMed ID: 35259049
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Molecular imaging of activated platelets via antibody-targeted ultra-small iron oxide nanoparticles displaying unique dual MRI contrast.
    Ta HT; Li Z; Hagemeyer CE; Cowin G; Zhang S; Palasubramaniam J; Alt K; Wang X; Peter K; Whittaker AK
    Biomaterials; 2017 Jul; 134():31-42. PubMed ID: 28453956
    [TBL] [Abstract][Full Text] [Related]  

  • 78.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 79.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.