These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35890834)

  • 1. Photoplethysmogram Recording Length: Defining Minimal Length Requirement from Dynamical Characteristics.
    Sviridova N; Zhao T; Nakano A; Ikeguchi T
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using imaging photoplethysmography for heart rate estimation in non-human primates.
    Unakafov AM; Möller S; Kagan I; Gail A; Treue S; Wolf F
    PLoS One; 2018; 13(8):e0202581. PubMed ID: 30169537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OxiMA: A Frequency-Domain Approach to Address Motion Artifacts in Photoplethysmograms for Improved Estimation of Arterial Oxygen Saturation and Pulse Rate.
    Harvey J; Salehizadeh SMA; Mendelson Y; Chon KH
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):311-318. PubMed ID: 29993498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal-quality indices for the electrocardiogram and photoplethysmogram: derivation and applications to wireless monitoring.
    Orphanidou C; Bonnici T; Charlton P; Clifton D; Vallance D; Tarassenko L
    IEEE J Biomed Health Inform; 2015 May; 19(3):832-8. PubMed ID: 25069129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Robust Motion Artifact Detection Algorithm for Accurate Detection of Heart Rates From Photoplethysmographic Signals Using Time-Frequency Spectral Features.
    Dao D; Salehizadeh SMA; Noh Y; Chong JW; Cho CH; McManus D; Darling CE; Mendelson Y; Chon KH
    IEEE J Biomed Health Inform; 2017 Sep; 21(5):1242-1253. PubMed ID: 28113791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An affordable cuff-less blood pressure estimation solution.
    Jain M; Kumar N; Deb S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5294-5297. PubMed ID: 28325023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human photoplethysmogram through the Morse graph: Searching for the saddle point in experimental data.
    Miyaji T; Sviridova N; Aihara K; Zhao T; Nakano A
    Chaos; 2019 Apr; 29(4):043121. PubMed ID: 31042948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pyPPG: a Python toolbox for comprehensive photoplethysmography signal analysis.
    Goda MÁ; Charlton PH; Behar JA
    Physiol Meas; 2024 Apr; 45(4):. PubMed ID: 38478997
    [No Abstract]   [Full Text] [Related]  

  • 9. Application of multiscale Poincaré short-time computation versus multiscale entropy in analyzing fingertip photoplethysmogram amplitudes to differentiate diabetic from non-diabetic subjects.
    Haryadi B; Liou JJ; Wei HC; Xiao MX; Wu HT; Sun CK
    Comput Methods Programs Biomed; 2018 Nov; 166():115-121. PubMed ID: 30415711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A motion-tolerant approach for monitoring SpO
    Fan F; Yan Y; Tang Y; Zhang H
    Comput Biol Med; 2017 Dec; 91():291-305. PubMed ID: 29102826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Low-Power Photoplethysmogram-Based Heart Rate Sensor Using Heartbeat Locked Loop.
    Lee J; Jang DH; Park S; Cho S
    IEEE Trans Biomed Circuits Syst; 2018 Dec; 12(6):1220-1229. PubMed ID: 30334807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood Pressure Estimation Using On-body Continuous Wave Radar and Photoplethysmogram in Various Posture and Exercise Conditions.
    Pour Ebrahim M; Heydari F; Wu T; Walker K; Joe K; Redoute JM; Yuce MR
    Sci Rep; 2019 Nov; 9(1):16346. PubMed ID: 31705001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fuzzy entropy based motion artifact detection and pulse rate estimation for fingertip photoplethysmography.
    Paradkar N; Chowdhury SR
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():58-61. PubMed ID: 25569896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals.
    Zhang Q; Zhou D; Zeng X
    Biomed Eng Online; 2017 Feb; 16(1):23. PubMed ID: 28166774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear parameters estimation from sequential short time data series.
    Smietanowski M
    Auton Neurosci; 2001 Jul; 90(1-2):158-66. PubMed ID: 11485286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time estimation of respiratory rate from a photoplethysmogram using an adaptive lattice notch filter.
    Park C; Lee B
    Biomed Eng Online; 2014 Dec; 13():170. PubMed ID: 25518918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive pulse segmentation and artifact detection in photoplethysmography for mobile applications.
    Karlen W; Ansermino JM; Dumont G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3131-4. PubMed ID: 23366589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recording system and data fusion algorithm for enhancing the estimation of the respiratory rate from photoplethysmogram.
    Cernat RA; Ciorecan SI; Ungureanu C; Arends J; Strungaru R; Ungureanu GM
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5977-80. PubMed ID: 26737653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of cardiac output and systemic vascular resistance using a multivariate regression model with features selected from the finger photoplethysmogram and routine cardiovascular measurements.
    Lee QY; Redmond SJ; Chan GSh; Middleton PM; Steel E; Malouf P; Critoph C; Flynn G; O'Lone E; Lovell NH
    Biomed Eng Online; 2013 Mar; 12():19. PubMed ID: 23452705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.