These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35890861)

  • 1. Improved Dynamic Window Approach for Unmanned Surface Vehicles' Local Path Planning Considering the Impact of Environmental Factors.
    Wang Z; Liang Y; Gong C; Zhou Y; Zeng C; Zhu S
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unmanned Surface Vehicle Collision Avoidance Path Planning in Restricted Waters Using Multi-Objective Optimisation Complying with COLREGs.
    Gu Y; Rong Z; Tong H; Wang J; Si Y; Yang S
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Reinforcement Learning Collision Avoidance Algorithm for USVs Based on Maneuvering Characteristics and COLREGs.
    Fan Y; Sun Z; Wang G
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Path Planning for Forklift AGV Based on Smoothing A* and Improved DWA Hybrid Algorithm.
    Wu B; Chi X; Zhao C; Zhang W; Lu Y; Jiang D
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iterative Learning-Based Path and Speed Profile Optimization for an Unmanned Surface Vehicle.
    Yang Y; Li Q; Zhang J; Xie Y
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31941066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid global path planning algorithm for unmanned surface vehicles in large-scale and multi-island marine environments.
    Wang D; Zhang J; Jin J; Liu D; Mao X
    PeerJ Comput Sci; 2021; 7():e612. PubMed ID: 34307863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Improved Particle Swarm Optimization for Navigation of Unmanned Surface Vehicles.
    Xin J; Li S; Sheng J; Zhang Y; Cui Y
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31337015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-under-Actuated Unmanned Surface Vessel Coordinated Path Tracking.
    Li Z; Liu Z; Zhang J
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32041212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Greedy Mechanism Based Particle Swarm Optimization for Path Planning Problem of an Unmanned Surface Vehicle.
    Xin J; Zhong J; Li S; Sheng J; Cui Y
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31652911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unmanned Vehicles' Placement Optimisation for Internet of Things and Internet of Unmanned Vehicles.
    Dragulinescu AM; Halunga S; Zamfirescu C
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Line-of-sight-based global finite-time stable path following control of unmanned surface vehicles with actuator saturation.
    Li M; Guo C; Yu H; Yuan Y
    ISA Trans; 2022 Jun; 125():306-317. PubMed ID: 34275611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and Experimental Testing of an Unmanned Surface Vehicle with Rudderless Double Thrusters.
    Li C; Jiang J; Duan F; Liu W; Wang X; Bu L; Sun Z; Yang G
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31052545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Obstacle Avoidance for USVs Using Cross-Domain Deep Reinforcement Learning and Neural Network Model Predictive Controller.
    Li J; Chavez-Galaviz J; Azizzadenesheli K; Mahmoudian N
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-objective path planning for unmanned surface vehicle with currents effects.
    Ma Y; Hu M; Yan X
    ISA Trans; 2018 Apr; 75():137-156. PubMed ID: 29455891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Navigation and Area Assignment of Multiple USVs Based on Multi-Agent Deep Reinforcement Learning.
    Wen J; Liu S; Lin Y
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Multiobjective Hybrid Optimization Algorithm for Path Planning of Coal Mine Patrol Robot.
    Gao Y; Dai Z; Yuan J
    Comput Intell Neurosci; 2022; 2022():9094572. PubMed ID: 35785104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex Environment Path Planning for Unmanned Aerial Vehicles.
    Zhang J; Li J; Yang H; Feng X; Sun G
    Sensors (Basel); 2021 Aug; 21(15):. PubMed ID: 34372486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative path planning of multiple autonomous underwater vehicles operating in dynamic ocean environment.
    Zhuang Y; Huang H; Sharma S; Xu D; Zhang Q
    ISA Trans; 2019 Nov; 94():174-186. PubMed ID: 31047643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Improved Genetic Algorithm for Path-Planning of Unmanned Surface Vehicle.
    Xin J; Zhong J; Yang F; Cui Y; Sheng J
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31212651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Aquatic Mobile Sensing USV Swarm with a Link Quality-Based Delay Tolerant Network.
    Sousa D; Luís M; Sargento S; Pereira A
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30322143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.