BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35890924)

  • 1. Non-Deep Active Learning for Deep Neural Networks.
    Kawano Y; Nota Y; Mochizuki R; Aoki Y
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient contour-based annotation by iterative deep learning for organ segmentation from volumetric medical images.
    Zhuang M; Chen Z; Wang H; Tang H; He J; Qin B; Yang Y; Jin X; Yu M; Jin B; Li T; Kettunen L
    Int J Comput Assist Radiol Surg; 2023 Feb; 18(2):379-394. PubMed ID: 36048319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation.
    Xiao Z; Su Y; Deng Z; Zhang W
    Comput Methods Programs Biomed; 2022 Nov; 226():107099. PubMed ID: 36116398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biologically motivated learning method for deep neural networks using hierarchical competitive learning.
    Shinozaki T
    Neural Netw; 2021 Dec; 144():271-278. PubMed ID: 34520937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active learning using deep Bayesian networks for surgical workflow analysis.
    Bodenstedt S; Rivoir D; Jenke A; Wagner M; Breucha M; Müller-Stich B; Mees ST; Weitz J; Speidel S
    Int J Comput Assist Radiol Surg; 2019 Jun; 14(6):1079-1087. PubMed ID: 30968355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unlabeled data selection for active learning in image classification.
    Li X; Wang X; Chen X; Lu Y; Fu H; Wu YC
    Sci Rep; 2024 Jan; 14(1):424. PubMed ID: 38172266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpolation consistency training for semi-supervised learning.
    Verma V; Kawaguchi K; Lamb A; Kannala J; Solin A; Bengio Y; Lopez-Paz D
    Neural Netw; 2022 Jan; 145():90-106. PubMed ID: 34735894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medical Instrument Segmentation in 3D US by Hybrid Constrained Semi-Supervised Learning.
    Yang H; Shan C; Bouwman A; Dekker LRC; Kolen AF; de With PHN
    IEEE J Biomed Health Inform; 2022 Feb; 26(2):762-773. PubMed ID: 34347611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep virtual adversarial self-training with consistency regularization for semi-supervised medical image classification.
    Wang X; Chen H; Xiang H; Lin H; Lin X; Heng PA
    Med Image Anal; 2021 May; 70():102010. PubMed ID: 33677262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning low-dose CT degradation from unpaired data with flow-based model.
    Liu X; Liang X; Deng L; Tan S; Xie Y
    Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using pseudo-labeling to improve performance of deep neural networks for animal identification.
    Ferreira REP; Lee YJ; Dórea JRR
    Sci Rep; 2023 Aug; 13(1):13875. PubMed ID: 37620446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel biomedical image indexing and retrieval system via deep preference learning.
    Pang S; Orgun MA; Yu Z
    Comput Methods Programs Biomed; 2018 May; 158():53-69. PubMed ID: 29544790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Deep-Learning and Conventional Machine-Learning Methods for the Automatic Recognition of the Hepatocellular Carcinoma Areas from Ultrasound Images.
    Brehar R; Mitrea DA; Vancea F; Marita T; Nedevschi S; Lupsor-Platon M; Rotaru M; Badea RI
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32485986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning for evolutive lymphoma and residual masses recognition in whole body diffusion weighted magnetic resonance images.
    Ferjaoui R; Cherni MA; Boujnah S; Kraiem NEH; Kraiem T
    Comput Methods Programs Biomed; 2021 Sep; 209():106320. PubMed ID: 34390938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
    Pang S; Yu Z; Orgun MA
    Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DARC: Deep adaptive regularized clustering for histopathological image classification.
    Li J; Liu J; Yue H; Cheng J; Kuang H; Bai H; Wang Y; Wang J
    Med Image Anal; 2022 Aug; 80():102521. PubMed ID: 35780594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi-supervised learning for an improved diagnosis of COVID-19 in CT images.
    Han CH; Kim M; Kwak JT
    PLoS One; 2021; 16(4):e0249450. PubMed ID: 33793650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of Knowledge Creation-Oriented Convolutional Neural Network in Learning Interaction.
    Zhang H; Luo X
    Comput Intell Neurosci; 2022; 2022():6493311. PubMed ID: 35341199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Method for Training Convolutional Neural Networks for In Situ Plankton Image Recognition and Classification Based on the Mechanisms of the Human Eye.
    Cheng X; Ren Y; Cheng K; Cao J; Hao Q
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32370162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliable Label-Efficient Learning for Biomedical Image Recognition.
    Gu Y; Shen M; Yang J; Yang GZ
    IEEE Trans Biomed Eng; 2019 Sep; 66(9):2423-2432. PubMed ID: 30596566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.