These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 35890943)

  • 1. Application of Deep Reinforcement Learning to NS-SHAFT Game Signal Control.
    Chang CL; Chen ST; Lin PY; Chang CY
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multisource Transfer Double DQN Based on Actor Learning.
    Pan J; Wang X; Cheng Y; Yu Q; Jie Pan ; Xuesong Wang ; Yuhu Cheng ; Qiang Yu ; Yu Q; Cheng Y; Pan J; Wang X
    IEEE Trans Neural Netw Learn Syst; 2018 Jun; 29(6):2227-2238. PubMed ID: 29771674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pursuit and Evasion Strategy of a Differential Game Based on Deep Reinforcement Learning.
    Xu C; Zhang Y; Wang W; Dong L
    Front Bioeng Biotechnol; 2022; 10():827408. PubMed ID: 35392407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep reinforcement learning for automated radiation adaptation in lung cancer.
    Tseng HH; Luo Y; Cui S; Chien JT; Ten Haken RK; Naqa IE
    Med Phys; 2017 Dec; 44(12):6690-6705. PubMed ID: 29034482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining STDP and binary networks for reinforcement learning from images and sparse rewards.
    Chevtchenko SF; Ludermir TB
    Neural Netw; 2021 Dec; 144():496-506. PubMed ID: 34601362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Reinforcement Learning With Modulated Hebbian Plus Q-Network Architecture.
    Ladosz P; Ben-Iwhiwhu E; Dick J; Ketz N; Kolouri S; Krichmar JL; Pilly PK; Soltoggio A
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):2045-2056. PubMed ID: 34559664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constrained Deep Q-Learning Gradually Approaching Ordinary Q-Learning.
    Ohnishi S; Uchibe E; Yamaguchi Y; Nakanishi K; Yasui Y; Ishii S
    Front Neurorobot; 2019; 13():103. PubMed ID: 31920613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MonkeyKing: Adaptive Parameter Tuning on Big Data Platforms with Deep Reinforcement Learning.
    Du H; Han P; Xiang Q; Huang S
    Big Data; 2020 Aug; 8(4):270-290. PubMed ID: 32654536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized Single-Vehicle-Based Graph Reinforcement Learning for Decision-Making in Autonomous Driving.
    Yang F; Li X; Liu Q; Li Z; Gao X
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Teleconsultation dynamic scheduling with a deep reinforcement learning approach.
    Chen W; Li J
    Artif Intell Med; 2024 Mar; 149():102806. PubMed ID: 38462294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human-level control through deep reinforcement learning.
    Mnih V; Kavukcuoglu K; Silver D; Rusu AA; Veness J; Bellemare MG; Graves A; Riedmiller M; Fidjeland AK; Ostrovski G; Petersen S; Beattie C; Sadik A; Antonoglou I; King H; Kumaran D; Wierstra D; Legg S; Hassabis D
    Nature; 2015 Feb; 518(7540):529-33. PubMed ID: 25719670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep reinforcement transfer convolutional neural network for rolling bearing fault diagnosis.
    Wu Z; Jiang H; Liu S; Wang R
    ISA Trans; 2022 Oct; 129(Pt B):505-524. PubMed ID: 35272840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep reinforcement learning and its applications in medical imaging and radiation therapy: a survey.
    Xu L; Zhu S; Wen N
    Phys Med Biol; 2022 Nov; 67(22):. PubMed ID: 36270582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DQNViz: A Visual Analytics Approach to Understand Deep Q-Networks.
    Wang J; Gou L; Shen HW; Yang H
    IEEE Trans Vis Comput Graph; 2018 Sep; ():. PubMed ID: 30188823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated Double Estimator Architecture for Reinforcement Learning.
    Lv P; Wang X; Cheng Y; Duan Z; Chen CLP
    IEEE Trans Cybern; 2022 May; 52(5):3111-3122. PubMed ID: 33027028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minibatch Recursive Least Squares Q-Learning.
    Zhang C; Song Q; Meng Z
    Comput Intell Neurosci; 2021; 2021():5370281. PubMed ID: 34659393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of Reinforcement Learning in a Virtual Robotic Surgical Simulation.
    Bourdillon AT; Garg A; Wang H; Woo YJ; Pavone M; Boyd J
    Surg Innov; 2023 Feb; 30(1):94-102. PubMed ID: 35503302
    [No Abstract]   [Full Text] [Related]  

  • 18. Is Deep Reinforcement Learning Ready for Practical Applications in Healthcare? A Sensitivity Analysis of Duel-DDQN for Hemodynamic Management in Sepsis Patients.
    Lu M; Shahn Z; Sow D; Doshi-Velez F; Lehman LH
    AMIA Annu Symp Proc; 2020; 2020():773-782. PubMed ID: 33936452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human-level performance in 3D multiplayer games with population-based reinforcement learning.
    Jaderberg M; Czarnecki WM; Dunning I; Marris L; Lever G; CastaƱeda AG; Beattie C; Rabinowitz NC; Morcos AS; Ruderman A; Sonnerat N; Green T; Deason L; Leibo JZ; Silver D; Hassabis D; Kavukcuoglu K; Graepel T
    Science; 2019 May; 364(6443):859-865. PubMed ID: 31147514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human locomotion with reinforcement learning using bioinspired reward reshaping strategies.
    Nowakowski K; Carvalho P; Six JB; Maillet Y; Nguyen AT; Seghiri I; M'Pemba L; Marcille T; Ngo ST; Dao TT
    Med Biol Eng Comput; 2021 Jan; 59(1):243-256. PubMed ID: 33417125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.