These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35891070)

  • 1. Two-Step Joint Optimization with Auxiliary Loss Function for Noise-Robust Speech Recognition.
    Lee GW; Kim HK
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cluster-Based Pairwise Contrastive Loss for Noise-Robust Speech Recognition.
    Lee GW; Kim HK
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic Speech Recognition Performance Improvement for Mandarin Based on Optimizing Gain Control Strategy.
    Wang D; Wei Y; Zhang K; Ji D; Wang Y
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Hybrid CTC/Attention Architecture for Agglutinative Language Speech Recognition.
    Ren Z; Yolwas N; Slamu W; Cao R; Wang H
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The development of an automatic speech recognition model using interview data from long-term care for older adults.
    Hacking C; Verbeek H; Hamers JPH; Aarts S
    J Am Med Inform Assoc; 2023 Feb; 30(3):411-417. PubMed ID: 36495570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete and Resilient Documentation for Operational Medical Environments Leveraging Mobile Hands-free Technology in a Systems Approach: Experimental Study.
    Woo M; Mishra P; Lin J; Kar S; Deas N; Linduff C; Niu S; Yang Y; McClendon J; Smith DH; Shelton SL; Gainey CE; Gerard WC; Smith MC; Griffin SF; Gimbel RW; Wang KC
    JMIR Mhealth Uhealth; 2021 Oct; 9(10):e32301. PubMed ID: 34636729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. End-to-End Deep Convolutional Recurrent Models for Noise Robust Waveform Speech Enhancement.
    Ullah R; Wuttisittikulkij L; Chaudhary S; Parnianifard A; Shah S; Ibrar M; Wahab FE
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep causal speech enhancement and recognition using efficient long-short term memory Recurrent Neural Network.
    Li Z; Basit A; Daraz A; Jan A
    PLoS One; 2024; 19(1):e0291240. PubMed ID: 38170703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Causal speech enhancement using dynamical-weighted loss and attention encoder-decoder recurrent neural network.
    Peracha FK; Khattak MI; Salem N; Saleem N
    PLoS One; 2023; 18(5):e0285629. PubMed ID: 37167227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matrix sentence intelligibility prediction using an automatic speech recognition system.
    Schädler MR; Warzybok A; Hochmuth S; Kollmeier B
    Int J Audiol; 2015; 54 Suppl 2():100-7. PubMed ID: 26383042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining automatic speech recognition with semantic natural language processing in schizophrenia.
    Ciampelli S; Voppel AE; de Boer JN; Koops S; Sommer IEC
    Psychiatry Res; 2023 Jul; 325():115252. PubMed ID: 37236098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep neural network-based generalized sidelobe canceller for dual-channel far-field speech recognition.
    Li G; Liang S; Nie S; Liu W; Yang Z
    Neural Netw; 2021 Sep; 141():225-237. PubMed ID: 33930564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Acoustic Unit Augmentation with BPE-Dropout for Low-Resource End-to-End Speech Recognition.
    Laptev A; Andrusenko A; Podluzhny I; Mitrofanov A; Medennikov I; Matveev Y
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33924798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-Domain Joint Training Strategies of Speech Enhancement and Intent Classification Neural Models.
    Ali MN; Falavigna D; Brutti A
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and benchmarking of a Korean audio speech recognition model for Clinician-Patient conversations in radiation oncology clinics.
    Chun SJ; Park JB; Ryu H; Jang BS
    Int J Med Inform; 2023 Aug; 176():105112. PubMed ID: 37276615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On training targets for deep learning approaches to clean speech magnitude spectrum estimation.
    Nicolson A; Paliwal KK
    J Acoust Soc Am; 2021 May; 149(5):3273. PubMed ID: 34241115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speech Perception With Combined Electric-Acoustic Stimulation: A Simulation and Model Comparison.
    Rader T; Adel Y; Fastl H; Baumann U
    Ear Hear; 2015; 36(6):e314-25. PubMed ID: 25989069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emphasizing unseen words: New vocabulary acquisition for end-to-end speech recognition.
    Qu L; Weber C; Wermter S
    Neural Netw; 2023 Apr; 161():494-504. PubMed ID: 36805264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Study of Speech Recognition for Kazakh Based on Unsupervised Pre-Training.
    Meng W; Yolwas N
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech.
    Agarwalla S; Sarma KK
    Neural Netw; 2016 Jun; 78():97-111. PubMed ID: 26783204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.