These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35891070)

  • 41. Towards spoken clinical-question answering: evaluating and adapting automatic speech-recognition systems for spoken clinical questions.
    Liu F; Tur G; Hakkani-Tür D; Yu H
    J Am Med Inform Assoc; 2011; 18(5):625-30. PubMed ID: 21705457
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deep Learning-Based Noise Reduction Approach to Improve Speech Intelligibility for Cochlear Implant Recipients.
    Lai YH; Tsao Y; Lu X; Chen F; Su YT; Chen KC; Chen YH; Chen LC; Po-Hung Li L; Lee CH
    Ear Hear; 2018; 39(4):795-809. PubMed ID: 29360687
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spectral and Temporal Envelope Cues for Human and Automatic Speech Recognition in Noise.
    Hu G; Determan SC; Dong Y; Beeve AT; Collins JE; Gai Y
    J Assoc Res Otolaryngol; 2020 Feb; 21(1):73-87. PubMed ID: 31758279
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Advances in Completely Automated Vowel Analysis for Sociophonetics: Using End-to-End Speech Recognition Systems With DARLA.
    Coto-Solano R; Stanford JN; Reddy SK
    Front Artif Intell; 2021; 4():662097. PubMed ID: 34632373
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unsupervised modulation filter learning for noise-robust speech recognition.
    Agrawal P; Ganapathy S
    J Acoust Soc Am; 2017 Sep; 142(3):1686. PubMed ID: 28964083
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Racial disparities in automated speech recognition.
    Koenecke A; Nam A; Lake E; Nudell J; Quartey M; Mengesha Z; Toups C; Rickford JR; Jurafsky D; Goel S
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7684-7689. PubMed ID: 32205437
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A method for enhancing speech and warning signals based on parallel convolutional neural networks in a noisy environment.
    Kang HL; Na SD; Kim MN
    Technol Health Care; 2021; 29(S1):141-152. PubMed ID: 33682754
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Severity-based adaptation with limited data for ASR to aid dysarthric speakers.
    Mustafa MB; Salim SS; Mohamed N; Al-Qatab B; Siong CE
    PLoS One; 2014; 9(1):e86285. PubMed ID: 24466004
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A systematic comparison of contemporary automatic speech recognition engines for conversational clinical speech.
    Kodish-Wachs J; Agassi E; Kenny P; Overhage JM
    AMIA Annu Symp Proc; 2018; 2018():683-689. PubMed ID: 30815110
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Automatic speech recognition using a predictive echo state network classifier.
    Skowronski MD; Harris JG
    Neural Netw; 2007 Apr; 20(3):414-23. PubMed ID: 17556115
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Feasibility Study on Automatic Surgical Phase Identification based on Speech Recognition for Laparoscopic Prostatectomy.
    M FR; N R; P M; B O; L R B; J CP; E L; J L V
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4411-4414. PubMed ID: 36086038
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Separable spectro-temporal Gabor filter bank features: Reducing the complexity of robust features for automatic speech recognition.
    Schädler MR; Kollmeier B
    J Acoust Soc Am; 2015 Apr; 137(4):2047-59. PubMed ID: 25920855
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nonlinear spectro-temporal features based on a cochlear model for automatic speech recognition in a noisy situation.
    Choi YS; Lee SY
    Neural Netw; 2013 Sep; 45():62-9. PubMed ID: 23558292
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effect of hearing aid technologies on listening in an automobile.
    Wu YH; Stangl E; Bentler RA; Stanziola RW
    J Am Acad Audiol; 2013 Jun; 24(6):474-85. PubMed ID: 23886425
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biologically-Inspired Spike-Based Automatic Speech Recognition of Isolated Digits Over a Reproducing Kernel Hilbert Space.
    Li K; Príncipe JC
    Front Neurosci; 2018; 12():194. PubMed ID: 29666568
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A comparison of automatic and human speech recognition in null grammar.
    Juneja A
    J Acoust Soc Am; 2012 Mar; 131(3):EL256-61. PubMed ID: 22423817
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of Language Models for Continuous Uzbek Speech Recognition System.
    Mukhamadiyev A; Mukhiddinov M; Khujayarov I; Ochilov M; Cho J
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772184
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An Improvement to Conformer-Based Model for High-Accuracy Speech Feature Extraction and Learning.
    Liu M; Wei Y
    Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885089
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A multi-views multi-learners approach towards dysarthric speech recognition using multi-nets artificial neural networks.
    Shahamiri SR; Salim SS
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1053-63. PubMed ID: 24760940
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thoughts on the potential to compensate a hearing loss in noise.
    Schädler MR
    F1000Res; 2021; 10():311. PubMed ID: 34721841
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.