BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35891083)

  • 1. Improvement of Distance Measurement Based on Dispersive Interferometry Using Femtosecond Optical Frequency Comb.
    Niu Q; Song M; Zheng J; Jia L; Liu J; Ni L; Nian J; Cheng X; Zhang F; Qu X
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arbitrary distance measurement without dead zone by chirped pulse spectrally interferometry using a femtosecond optical frequency comb.
    Niu Q; Zheng J; Cheng X; Liu J; Jia L; Ni L; Nian J; Zhang F; Qu X
    Opt Express; 2022 Sep; 30(19):35029-35040. PubMed ID: 36242504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Data-Processing Algorithms for Dispersive Interferometry Using a Femtosecond Laser.
    Liu T; Matsukuma H; Suzuki A; Sato R; Gao W
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mode-resolved frequency comb interferometry for high-accuracy long distance measurement.
    van den Berg SA; van Eldik S; Bhattacharya N
    Sci Rep; 2015 Sep; 5():14661. PubMed ID: 26419282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved Algorithms of Data Processing for Dispersive Interferometry Using a Femtosecond Laser.
    Liu T; Wu J; Suzuki A; Sato R; Matsukuma H; Gao W
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Cyclic Error on Absolute Distance Measurement Based on Optical Frequency Combs.
    Li R; Tian H; Shi J; Ji R; Dong D; Zhou W
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integer-locking condition for stable dual-comb interferometry in situations with fluctuating frequency-comb repetition rates.
    Shibata R; Fujii S; Watanabe S
    Opt Express; 2024 May; 32(10):17373-17387. PubMed ID: 38858922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast algorithm based on the Hilbert transform for high-speed absolute distance measurement using a frequency scanning interferometry method.
    Li X; Duan F; Fu X; Bao R; Jiang J; Zhang C
    Appl Opt; 2022 Apr; 61(11):3150-3155. PubMed ID: 35471292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time and Meter-Scale Absolute Distance Measurement by Frequency-Comb-Referenced Multi-Wavelength Interferometry.
    Wang G; Tan L; Yan S
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29414897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absolute angular measurement with optical frequency comb using a dispersive interferometry.
    Liang X; Lin J; Wu T; Yang L; Wang Y; Liu Y; Zhu J
    Opt Express; 2020 Nov; 28(24):36095-36108. PubMed ID: 33379712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersive Fourier transform based dual-comb ranging.
    Chang B; Tan T; Du J; He X; Liang Y; Liu Z; Wang C; Xia H; Wu Z; Wang J; Wong KKY; Zhu T; Kong L; Li B; Rao Y; Yao B
    Nat Commun; 2024 Jun; 15(1):4990. PubMed ID: 38862530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Improved Data Processing Algorithm for Spectrally Resolved Interferometry Using a Femtosecond Laser.
    Liu T; Matsukuma H; Suzuki A; Sato R; Gao W
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave Absolute Distance Measurement Method with Ten-Micron-Level Accuracy and Meter-Level Range Based on Frequency Domain Interferometry.
    Tang L; Jia X; Ma H; Liu S; Chen Y; Tao T; Chen L; Wu J; Li C; Wang X; Weng J
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sinusoidal phase modulating absolute distance measurement interferometer combining frequency-sweeping and multi-wavelength interferometry.
    Zhang S; Xu Z; Chen B; Yan L; Xie J
    Opt Express; 2018 Apr; 26(7):9273-9284. PubMed ID: 29715881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Underwater distance measurement using frequency comb laser.
    Zhai X; Meng Z; Zhang H; Xu X; Qian Z; Xue B; Wu H
    Opt Express; 2019 Mar; 27(5):6757-6769. PubMed ID: 30876255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Technique progress of high-precision gas absorption spectroscopy with femtosecond optical frequency comb].
    Yang HL; Wei HY; Li Y; Ren LB; Zhang HY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Feb; 34(2):335-9. PubMed ID: 24822396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long distance measurement with femtosecond pulses using a dispersive interferometer.
    Cui M; Zeitouny MG; Bhattacharya N; van den Berg SA; Urbach HP
    Opt Express; 2011 Mar; 19(7):6549-62. PubMed ID: 21451683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absolute distance measurement by multi-heterodyne interferometry using a frequency comb and a cavity-stabilized tunable laser.
    Wu H; Zhang F; Liu T; Balling P; Qu X
    Appl Opt; 2016 May; 55(15):4210-8. PubMed ID: 27411152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interferogram-based determination of the absolute mode numbers of optical frequency combs in dual-comb spectroscopy.
    Fukuda T; Okano M; Watanabe S
    Opt Express; 2021 Jul; 29(14):22214-22227. PubMed ID: 34265991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absolute distance measurement by chirped pulse interferometry using a femtosecond pulse laser.
    Wu H; Zhang F; Liu T; Meng F; Li J; Qu X
    Opt Express; 2015 Nov; 23(24):31582-93. PubMed ID: 26698781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.