These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35891137)

  • 1. Virtual Spectral Selectivity in a Modulated Thermal Infrared Emitter with Lock-In Detection.
    Santalices D; Meléndez J; Briz S
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable Infrared Metamaterial Emitter for Gas Sensing Application.
    Xu R; Lin YS
    Nanomaterials (Basel); 2020 Jul; 10(8):. PubMed ID: 32722016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiation Enhancement by Graphene Oxide on Microelectromechanical System Emitters for Highly Selective Gas Sensing.
    Li N; Yuan H; Xu L; Tao J; Ng DKT; Lee LYT; Cheam DD; Zeng Y; Qiang B; Wang Q; Cai H; Singh N; Zhao D
    ACS Sens; 2019 Oct; 4(10):2746-2753. PubMed ID: 31524375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailorable infrared emission of microelectromechanical system-based thermal emitters with NiO films for gas sensing.
    Li N; Yuan H; Xu L; Zeng Y; Qiang B; Wang QJ; Zheng S; Cai H; Lee LYT; Singh N; Zhao D
    Opt Express; 2021 Jun; 29(12):19084-19093. PubMed ID: 34154150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermophotovoltaics with spectral and angular selective doped-oxide thermal emitters.
    Sakr E; Bermel P
    Opt Express; 2017 Oct; 25(20):A880-A895. PubMed ID: 29041299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor.
    Asano T; Suemitsu M; Hashimoto K; De Zoysa M; Shibahara T; Tsutsumi T; Noda S
    Sci Adv; 2016 Dec; 2(12):e1600499. PubMed ID: 28028532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reliability Design and Electro-Thermal-Optical Simulation of Bridge-Style Infrared Thermal Emitters.
    Zhou P; Chen R; Wang N; San H; Chen X
    Micromachines (Basel); 2016 Sep; 7(9):. PubMed ID: 30404338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Emitter with Engineered Anisotropic Radiation to Minimize Dual-Band Thermal Signature for Infrared Stealth Technology.
    Park C; Kim J; Hahn JW
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):43090-43097. PubMed ID: 32862637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Selectivity Planar Thermal Emitter with a Stable Temperature over 1400 K for a Thermophotovoltaic System.
    Wang J; Wu Z; Liu Y; Hou S; Qiao Y; Tang Z; Mao J; Zhang Q; Cao F
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49123-49131. PubMed ID: 37842846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A Methane Detection System Using Distributed Feedback Laser at 1 654 nm].
    Li B; Liu HF; He QX; Zhai B; Pan JQ; Zheng CT; Wang YD
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jan; 36(1):20-6. PubMed ID: 27228733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [IR thermal-emitter based photoacoustic spectrometer for gas detection].
    Zhang W; Yu QX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Mar; 27(3):614-8. PubMed ID: 17554936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-luminosity multipass cell for infrared imaging spectroscopy.
    Viola R
    Appl Opt; 2006 Apr; 45(12):2805-9. PubMed ID: 16633434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of radiant emitters used in food processing.
    Lloyd BJ; Farkas BE; Keener KM
    J Microw Power Electromagn Energy; 2003; 38(4):213-24. PubMed ID: 15323107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavelength-modulated photoacoustic spectroscopic instrumentation system for multiple greenhouse gas detection and in-field application in the Qinling mountainous region of China.
    Liu L; Huan H; Zhang X; Zhang L; Zhan J; Jiang S; Yin X; Chen B; Shao X; Xu X; Mandelis A
    Photoacoustics; 2024 Aug; 38():100620. PubMed ID: 38911131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices.
    Pusch A; De Luca A; Oh SS; Wuestner S; Roschuk T; Chen Y; Boual S; Ali Z; Phillips CC; Hong M; Maier SA; Udrea F; Hopper RH; Hess O
    Sci Rep; 2015 Dec; 5():17451. PubMed ID: 26639902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis and compensation of the measurement error in a lock-in amplifier used for wavelength shift measurements in optical sensing application.
    Shi WJ; Ning YN; Grattan KT; Palmer AW
    Appl Opt; 1997 Aug; 36(22):5482-7. PubMed ID: 18259369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable Narrowband Silicon-Based Thermal Emitter with Excellent High-Temperature Stability Fabricated by Lithography-Free Methods.
    Hou G; Wang Q; Zhu Y; Lu Z; Xu J; Chen K
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MEMS-based meta-emitter with actively tunable radiation power characteristic.
    Li K; Liang Y; Lin YS
    Discov Nano; 2024 Aug; 19(1):133. PubMed ID: 39180606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Apparatus for Spectral Emissivity Measurements of Thermal Control Materials at Low Temperatures.
    Ma J; Zhang Y; Wu L; Li H; Song L
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30965615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultraviolet-nanoimprinted packaged metasurface thermal emitters for infrared CO
    Miyazaki HT; Kasaya T; Oosato H; Sugimoto Y; Choi B; Iwanaga M; Sakoda K
    Sci Technol Adv Mater; 2015 Jun; 16(3):035005. PubMed ID: 27877806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.