These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35892408)

  • 1. Optimized Deep Brain Stimulation Surgery to Avoid Vascular Damage: A Single-Center Retrospective Analysis of Path Planning for Various Deep Targets by MRI Image Fusion.
    Wang X; Li N; Li J; Kou H; Wang J; Jing J; Su M; Li Y; Qu L; Wang X
    Brain Sci; 2022 Jul; 12(8):. PubMed ID: 35892408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Trajectory Planning With Susceptibility-Weighted Imaging for Intracranial Electrode Implantation.
    Barros G; Lang MJ; Mouchtouris N; Sharan AD; Wu C
    Oper Neurosurg (Hagerstown); 2018 Jul; 15(1):60-65. PubMed ID: 29048589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of small veins with susceptibility-weighted imaging for stereotactic trajectory planning in deep brain stimulation.
    Mahvash M; Pechlivanis I; Charalampaki P; Jansen O; Mehdorn HM
    Clin Neurol Neurosurg; 2014 Sep; 124():151-5. PubMed ID: 25051166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of automatic computer-aided surgical trajectory planning in improving the expected safety of stereotactic neurosurgery.
    Trope M; Shamir RR; Joskowicz L; Medress Z; Rosenthal G; Mayer A; Levin N; Bick A; Shoshan Y
    Int J Comput Assist Radiol Surg; 2015 Jul; 10(7):1127-40. PubMed ID: 25408305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of electrode position in deep brain stimulation by image fusion (MRI and CT).
    Barnaure I; Pollak P; Momjian S; Horvath J; Lovblad KO; Boëx C; Remuinan J; Burkhard P; Vargas MI
    Neuroradiology; 2015 Sep; 57(9):903-8. PubMed ID: 26022355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the Stereotactic Accuracies of Function-Guided Deep Brain Stimulation, Calculated Using Multitrack Target Locations Geometrically Inferred from Three-Dimensional Trajectory Rotations, and of Magnetic Resonance Imaging-Guided Deep Brain Stimulation and Outcomes.
    Park SC; Lee CS; Kim SM; Choi EJ; Lee JK
    World Neurosurg; 2017 Feb; 98():734-749.e7. PubMed ID: 27876666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retrospective evaluation and SEEG trajectory analysis for interactive multi-trajectory planner assistant.
    Scorza D; De Momi E; Plaino L; Amoroso G; Arnulfo G; Narizzano M; Kabongo L; Cardinale F
    Int J Comput Assist Radiol Surg; 2017 Oct; 12(10):1727-1738. PubMed ID: 28710548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy of frame-based stereotactic magnetic resonance imaging vs frame-based stereotactic head computed tomography fused with recent magnetic resonance imaging for postimplantation deep brain stimulator lead localization.
    Pezeshkian P; DeSalles AA; Gorgulho A; Behnke E; McArthur D; Bari A
    Neurosurgery; 2011 Dec; 69(6):1299-306. PubMed ID: 21725253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrode placement accuracy in robot-assisted epilepsy surgery: A comparison of different referencing techniques including frame-based CT versus facial laser scan based on CT or MRI.
    Spyrantis A; Cattani A; Woebbecke T; Konczalla J; Strzelczyk A; Rosenow F; Wagner M; Seifert V; Kudernatsch M; Freiman TM
    Epilepsy Behav; 2019 Feb; 91():38-47. PubMed ID: 30497893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation of lead trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson's disease: results from a randomized trial.
    Witt K; Granert O; Daniels C; Volkmann J; Falk D; van Eimeren T; Deuschl G
    Brain; 2013 Jul; 136(Pt 7):2109-19. PubMed ID: 23801735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraoperative Stereotactic Frame Registration Using a Three-Dimensional Imaging System with and without Preoperative Computed Tomography for Image Fusion.
    Spatz JM; Conner AK; Young JS; Starr PA
    Stereotact Funct Neurosurg; 2020; 98(5):313-318. PubMed ID: 32818947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraoperative Stereotactic Magnetic Resonance Imaging for Deep Brain Stimulation Electrode Planning in Patients with Movement Disorders.
    Jakobs M; Krasniqi E; Kloß M; Neumann JO; Campos B; Unterberg AW; Kiening KL
    World Neurosurg; 2018 Nov; 119():e801-e808. PubMed ID: 30096492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep brain stimulation of the internal globus pallidus in dystonia: target localisation under general anaesthesia.
    Pinsker MO; Volkmann J; Falk D; Herzog J; Steigerwald F; Deuschl G; Mehdorn HM
    Acta Neurochir (Wien); 2009 Jul; 151(7):751-8. PubMed ID: 19468677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy of deep brain stimulation electrode placement using intraoperative computed tomography without microelectrode recording.
    Burchiel KJ; McCartney S; Lee A; Raslan AM
    J Neurosurg; 2013 Aug; 119(2):301-6. PubMed ID: 23724986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting the subthalamic nucleus for deep brain stimulation--a comparative study between magnetic resonance images alone and fusion with computed tomographic images.
    Chen SY; Tsai ST; Hung HY; Lin SH; Pan YH; Lin SZ
    World Neurosurg; 2011 Jan; 75(1):132-7; discussion 22-4, 29-31. PubMed ID: 21492677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical study of parameters for deep brain stimulation automatic preoperative planning of electrodes trajectories.
    Essert C; Fernandez-Vidal S; Capobianco A; Haegelen C; Karachi C; Bardinet E; Marchal M; Jannin P
    Int J Comput Assist Radiol Surg; 2015 Dec; 10(12):1973-83. PubMed ID: 26210941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving recorded volume in mesial temporal lobe by optimizing stereotactic intracranial electrode implantation planning.
    Zelmann R; Beriault S; Marinho MM; Mok K; Hall JA; Guizard N; Haegelen C; Olivier A; Pike GB; Collins DL
    Int J Comput Assist Radiol Surg; 2015 Oct; 10(10):1599-615. PubMed ID: 25808256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Steerable Path Planning for Deep Brain Stimulation Safeguarding Fiber Tracts and Deep Gray Matter Nuclei.
    Segato A; Pieri V; Favaro A; Riva M; Falini A; De Momi E; Castellano A
    Front Robot AI; 2019; 6():70. PubMed ID: 33501085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directional Leads for Deep Brain Stimulation: Technical Notes and Experiences.
    Fricke P; Nickl R; Breun M; Volkmann J; Kirsch D; Ernestus RI; Steigerwald F; Matthies C
    Stereotact Funct Neurosurg; 2021; 99(4):305-312. PubMed ID: 33401277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of anatomic variations on stereotactic laser amygdalohippocampectomy and a proposed protocol for trajectory planning.
    Wu C; Boorman DW; Gorniak RJ; Farrell CJ; Evans JJ; Sharan AD
    Neurosurgery; 2015 Jun; 11 Suppl 2():345-56; discussion 356-7. PubMed ID: 25850599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.