BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35892562)

  • 1. Insights into Metabolic Activity and Structure of the Retina through Multiphoton Fluorescence Lifetime Imaging Microscopy in Mice.
    Kesavamoorthy N; Junge JA; Fraser SE; Ameri H
    Cells; 2022 Jul; 11(15):. PubMed ID: 35892562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Retinal Metabolic Activity and Structural Development between rd10 Mice and Normal Mice Using Multiphoton Fluorescence Lifetime Imaging Microscopy.
    Su E; Kesavamoorthy N; Junge JA; Zheng M; Craft CM; Ameri H
    Curr Issues Mol Biol; 2024 Jan; 46(1):612-620. PubMed ID: 38248341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence lifetime imaging microscopy (FLIM) detects differences in metabolic signatures between euploid and aneuploid human blastocysts.
    Shah JS; Venturas M; Sanchez TH; Penzias AS; Needleman DJ; Sakkas D
    Hum Reprod; 2022 Mar; 37(3):400-410. PubMed ID: 35106567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-photon FLIM of NAD(P)H and FAD in mesenchymal stem cells undergoing either osteogenic or chondrogenic differentiation.
    Meleshina AV; Dudenkova VV; Bystrova AS; Kuznetsova DS; Shirmanova MV; Zagaynova EV
    Stem Cell Res Ther; 2017 Jan; 8(1):15. PubMed ID: 28129796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiphoton FLIM imaging of NAD(P)H and FAD with one excitation wavelength.
    Cao R; Wallrabe H; Periasamy A
    J Biomed Opt; 2020 Jan; 25(1):1-16. PubMed ID: 31920048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autofluorescence Imaging to Evaluate Cellular Metabolism.
    Theodossiou A; Hu L; Wang N; Nguyen U; Walsh AJ
    J Vis Exp; 2021 Nov; (177):. PubMed ID: 34842243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autofluorescence lifetime imaging of cellular metabolism: Sensitivity toward cell density, pH, intracellular, and intercellular heterogeneity.
    Chacko JV; Eliceiri KW
    Cytometry A; 2019 Jan; 95(1):56-69. PubMed ID: 30296355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic imaging with the use of fluorescence lifetime imaging microscopy (FLIM) accurately detects mitochondrial dysfunction in mouse oocytes.
    Sanchez T; Wang T; Pedro MV; Zhang M; Esencan E; Sakkas D; Needleman D; Seli E
    Fertil Steril; 2018 Dec; 110(7):1387-1397. PubMed ID: 30446247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioenergetic Alterations of Metabolic Redox Coenzymes as NADH, FAD and FMN by Means of Fluorescence Lifetime Imaging Techniques.
    Kalinina S; Freymueller C; Naskar N; von Einem B; Reess K; Sroka R; Rueck A
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NAD(P)H fluorescence lifetime measurements in fixed biological tissues.
    Chacko JV; Eliceiri KW
    Methods Appl Fluoresc; 2019 Oct; 7(4):044005. PubMed ID: 31553966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous NAD(P)H and FAD fluorescence lifetime microscopy of long UVA-induced metabolic stress in reconstructed human skin.
    Ung TPL; Lim S; Solinas X; Mahou P; Chessel A; Marionnet C; Bornschlögl T; Beaurepaire E; Bernerd F; Pena AM; Stringari C
    Sci Rep; 2021 Nov; 11(1):22171. PubMed ID: 34772978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo fluorescence lifetime imaging of macrophage intracellular metabolism during wound responses in zebrafish.
    Miskolci V; Tweed KE; Lasarev MR; Britt EC; Walsh AJ; Zimmerman LJ; McDougal CE; Cronan MR; Fan J; Sauer JD; Skala MC; Huttenlocher A
    Elife; 2022 Feb; 11():. PubMed ID: 35200139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-Photon Microscopy (TPM) and Fluorescence Lifetime Imaging Microscopy (FLIM) of Retinal Pigment Epithelium (RPE) of Mice In Vivo.
    Miura Y
    Methods Mol Biol; 2018; 1753():73-88. PubMed ID: 29564782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct metabolic profiles in Drosophila sperm and somatic tissues revealed by two-photon NAD(P)H and FAD autofluorescence lifetime imaging.
    Wetzker C; Reinhardt K
    Sci Rep; 2019 Dec; 9(1):19534. PubMed ID: 31862926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segmented cell analyses to measure redox states of autofluorescent NAD(P)H, FAD & Trp in cancer cells by FLIM.
    Wallrabe H; Svindrych Z; Alam SR; Siller KH; Wang T; Kashatus D; Hu S; Periasamy A
    Sci Rep; 2018 Jan; 8(1):79. PubMed ID: 29311591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating Cell Metabolism Through Autofluorescence Imaging of NAD(P)H and FAD.
    Kolenc OI; Quinn KP
    Antioxid Redox Signal; 2019 Feb; 30(6):875-889. PubMed ID: 29268621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and characterization of phasor-based analysis for FLIM to evaluate the metabolic and epigenetic impact of HER2 inhibition on squamous cell carcinoma cultures.
    Pham DL; Miller CR; Myers MS; Myers DM; Hansen LA; Nichols MG
    J Biomed Opt; 2021 Oct; 26(10):. PubMed ID: 34628733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-Free Optical Metabolic Imaging in Cells and Tissues.
    Georgakoudi I; Quinn KP
    Annu Rev Biomed Eng; 2023 Jun; 25():413-443. PubMed ID: 37104650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noninvasive metabolic profiling of cumulus cells, oocytes, and embryos via fluorescence lifetime imaging microscopy: a mini-review.
    Venturas M; Yang X; Sakkas D; Needleman D
    Hum Reprod; 2023 May; 38(5):799-810. PubMed ID: 37015098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic state of human blastocysts measured by fluorescence lifetime imaging microscopy.
    Venturas M; Shah JS; Yang X; Sanchez TH; Conway W; Sakkas D; Needleman DJ
    Hum Reprod; 2022 Mar; 37(3):411-427. PubMed ID: 34999823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.