BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 35892590)

  • 1. Shared and Divergent Epigenetic Mechanisms in Cachexia and Sarcopenia.
    Yedigaryan L; Gatti M; Marini V; Maraldi T; Sampaolesi M
    Cells; 2022 Jul; 11(15):. PubMed ID: 35892590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cachexia and sarcopenia: mechanisms and potential targets for intervention.
    Argilés JM; Busquets S; Stemmler B; López-Soriano FJ
    Curr Opin Pharmacol; 2015 Jun; 22():100-6. PubMed ID: 25974750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle wasting in cancer and ageing: cachexia versus sarcopenia.
    Argilés JM; Busquets S; Felipe A; López-Soriano FJ
    Adv Gerontol; 2006; 18():39-54. PubMed ID: 16676797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle wasting after a severe burn is a consequence of cachexia and sarcopenia.
    Song J; Clark A; Wade CE; Wolf SE
    JPEN J Parenter Enteral Nutr; 2021 Nov; 45(8):1627-1633. PubMed ID: 34296448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting Epigenetic Regulators with HDAC and BET Inhibitors to Modulate Muscle Wasting.
    Nevi L; Pöllänen N; Penna F; Caretti G
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Physiology of sarcopenia. Similarities and differences with neoplasic cachexia (muscle impairments in cancer and ageing)].
    Argilés JM; Busquets S; López-Soriano FJ; Figueras M
    Nutr Hosp; 2006 May; 21 Suppl 3():38-45. PubMed ID: 16768029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive proteome analysis of human skeletal muscle in cachexia and sarcopenia: a pilot study.
    Ebhardt HA; Degen S; Tadini V; Schilb A; Johns N; Greig CA; Fearon KCH; Aebersold R; Jacobi C
    J Cachexia Sarcopenia Muscle; 2017 Aug; 8(4):567-582. PubMed ID: 28296247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanisms involved in muscle wasting in cancer and ageing: cachexia versus sarcopenia.
    Argilés JM; Busquets S; Felipe A; López-Soriano FJ
    Int J Biochem Cell Biol; 2005 May; 37(5):1084-104. PubMed ID: 15743680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer cachexia: molecular mechanisms and treatment strategies.
    Setiawan T; Sari IN; Wijaya YT; Julianto NM; Muhammad JA; Lee H; Chae JH; Kwon HY
    J Hematol Oncol; 2023 May; 16(1):54. PubMed ID: 37217930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutic Implications of miRNAs for Muscle-Wasting Conditions.
    Yedigaryan L; Sampaolesi M
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Ontology (GO)-Driven Inference of Candidate Proteomic Markers Associated with Muscle Atrophy Conditions.
    Stalmach A; Boehm I; Fernandes M; Rutter A; Skipworth RJE; Husi H
    Molecules; 2022 Aug; 27(17):. PubMed ID: 36080280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeletal muscle loss: cachexia, sarcopenia, and inactivity.
    Evans WJ
    Am J Clin Nutr; 2010 Apr; 91(4):1123S-1127S. PubMed ID: 20164314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inducible nitric oxide synthase (iNOS) in muscle wasting syndrome, sarcopenia, and cachexia.
    Hall DT; Ma JF; Marco SD; Gallouzi IE
    Aging (Albany NY); 2011 Aug; 3(8):702-15. PubMed ID: 21832306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of Skeletal Muscle Atrophy in Cachexia by MicroRNAs and Long Non-coding RNAs.
    Chen R; Lei S; Jiang T; She Y; Shi H
    Front Cell Dev Biol; 2020; 8():577010. PubMed ID: 33043011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sarcopenia and cachexia in chronic diseases: from mechanisms to treatment.
    Lena A; Hadzibegovic S; von Haehling S; Springer J; Coats AJ; Anker MS
    Pol Arch Intern Med; 2021 Dec; 131(12):. PubMed ID: 34775741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ageing in relation to skeletal muscle dysfunction: redox homoeostasis to regulation of gene expression.
    Goljanek-Whysall K; Iwanejko LA; Vasilaki A; Pekovic-Vaughan V; McDonagh B
    Mamm Genome; 2016 Aug; 27(7-8):341-57. PubMed ID: 27215643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNAs in Skeletal Muscle Aging: Current Issues and Perspectives.
    Jung HJ; Lee KP; Kwon KS; Suh Y
    J Gerontol A Biol Sci Med Sci; 2019 Jun; 74(7):1008-1014. PubMed ID: 30215687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle Wasting and Sarcopenia in Heart Failure-The Current State of Science.
    Lena A; Anker MS; Springer J
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32911600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The wasting continuum in heart failure: from sarcopenia to cachexia.
    von Haehling S
    Proc Nutr Soc; 2015 Nov; 74(4):367-77. PubMed ID: 26264581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exosomal microRNAs in cancer-related sarcopenia: Tumor-derived exosomal microRNAs in muscle atrophy.
    Li C; Wu Q; Li Z; Wang Z; Tu Y; Chen C; Sun S; Sun S
    Exp Biol Med (Maywood); 2021 May; 246(10):1156-1166. PubMed ID: 33554647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.