These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Thermal Conductivity of Ordered Porous Structures Coupling Gas and Solid Phases: A Molecular Dynamics Study. Niu D; Gao H Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33925901 [TBL] [Abstract][Full Text] [Related]
6. High Temperature Magnetic Cores Based on PowderMEMS Technique for Integrated Inductors with Active Cooling. Paesler M; Lisec T; Kapels H Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334638 [TBL] [Abstract][Full Text] [Related]
8. Wafer Level Vacuum Packaging of MEMS-Based Uncooled Infrared Sensors. Demirhan Aydin G; Akar OS; Akin T Micromachines (Basel); 2024 Jul; 15(8):. PubMed ID: 39203586 [TBL] [Abstract][Full Text] [Related]
9. Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions. Liang XM; Ding W; Chen HH; Shu Z; Zhao G; Zhang HF; Gao D Biomed Microdevices; 2011 Oct; 13(5):923-8. PubMed ID: 21710370 [TBL] [Abstract][Full Text] [Related]
10. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media. Wang M; Wang J; Pan N; Chen S Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036702. PubMed ID: 17500821 [TBL] [Abstract][Full Text] [Related]
11. Cost-Efficient Wafer-Level Capping for MEMS and Imaging Sensors by Adhesive Wafer Bonding. Bleiker SJ; Visser Taklo MM; Lietaer N; Vogl A; Bakke T; Niklaus F Micromachines (Basel); 2016 Oct; 7(10):. PubMed ID: 30404365 [TBL] [Abstract][Full Text] [Related]
12. A MEMS device capable of measuring near-field thermal radiation between membranes. Feng C; Tang Z; Yu J; Sun C Sensors (Basel); 2013 Feb; 13(2):1998-2010. PubMed ID: 23385413 [TBL] [Abstract][Full Text] [Related]
13. Research on Wafer-Level MEMS Packaging with Through-Glass Vias. Yang F; Han G; Yang J; Zhang M; Ning J; Yang F; Si C Micromachines (Basel); 2018 Dec; 10(1):. PubMed ID: 30597830 [TBL] [Abstract][Full Text] [Related]
14. Ion Write Microthermotics: Programing Thermal Metamaterials at the Microscale. Choe HS; Prabhakar R; Wehmeyer G; Allen FI; Lee W; Jin L; Li Y; Yang P; Qiu CW; Dames C; Scott M; Minor A; Bahk JH; Wu J Nano Lett; 2019 Jun; 19(6):3830-3837. PubMed ID: 31059272 [TBL] [Abstract][Full Text] [Related]
15. Measurement and Isolation of Thermal Stress in Silicon-On-Glass MEMS Structures. Chen Z; Guo M; Zhang R; Zhou B; Wei Q Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30096854 [TBL] [Abstract][Full Text] [Related]
16. Quantification of atomic force microscopy tip and sample thermal contact. Umatova Z; Zhang Y; Rajkumar R; Dobson PS; Weaver JMR Rev Sci Instrum; 2019 Sep; 90(9):095003. PubMed ID: 31575264 [TBL] [Abstract][Full Text] [Related]
17. Investigation of temperature sensitivity of a MEMS gravimeter based on geometric anti-spring. Belwanshi V; Prasad A; Toland K; Middlemiss R; Paul D; Hammond G Rev Sci Instrum; 2022 Dec; 93(12):125002. PubMed ID: 36586950 [TBL] [Abstract][Full Text] [Related]
18. Graphitized silicon carbide microbeams: wafer-level, self-aligned graphene on silicon wafers. Cunning BV; Ahmed M; Mishra N; Kermany AR; Wood B; Iacopi F Nanotechnology; 2014 Aug; 25(32):325301. PubMed ID: 25053702 [TBL] [Abstract][Full Text] [Related]
19. Effects of Microscopic Properties on Macroscopic Thermal Conductivity for Convective Heat Transfer in Porous Materials. Jbeili M; Zhang J Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832781 [TBL] [Abstract][Full Text] [Related]
20. Sputtered Encapsulation as Wafer Level Packaging for Isolatable MEMS Devices: A Technique Demonstrated on a Capacitive Accelerometer. Hamzah AA; Yunas J; Majlis BY; Ahmad I Sensors (Basel); 2008 Nov; 8(11):7438-7452. PubMed ID: 27873938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]