These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35893535)

  • 1. Stimulated Thermal Scattering in Two-Photon Absorbing Nanocolloids under Laser Radiation of Nanosecond-to-Picosecond Pulse Widths.
    Erokhin AI; Bulychev NA; Parkevich EV; Medvedev MA; Smetanin IV
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35893535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral shifts of stimulated Rayleigh-Mie scattering in Ag nanoparticle colloids.
    Erokhin AI; Smetanin IV; Mikhailov SI; Bulychev NA
    Opt Lett; 2018 Apr; 43(7):1570-1573. PubMed ID: 29601032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulse-width dependence of optical nonlinearities in As2Se3 chalcogenide glass in the picosecond-to-nanosecond region.
    Shinkawa K; Ogusu K
    Opt Express; 2008 Oct; 16(22):18230-40. PubMed ID: 18958100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear optical absorption and stimulated Mie scattering in metallic nanoparticle suspensions.
    He GS; Law WC; Baev A; Liu S; Swihart MT; Prasad PN
    J Chem Phys; 2013 Jan; 138(2):024202. PubMed ID: 23320676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of stimulated Mie scattering: Light-induced redistribution of self-assembled nanospheres of two-photon absorbing chromophore.
    He GS; Hu W; Baev A; Kannan R; Tan LS; Prasad PN
    J Chem Phys; 2019 Sep; 151(10):104202. PubMed ID: 31521075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulated Rayleigh-Bragg scattering enhanced by two-photon excitation.
    He G; Lin TC; Prasad P
    Opt Express; 2004 Nov; 12(24):5952-61. PubMed ID: 19488236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses.
    Vogel A; Busch S; Jungnickel K; Birngruber R
    Lasers Surg Med; 1994; 15(1):32-43. PubMed ID: 7997046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral-temporal dynamics of high power Raman picosecond pulse using H
    Benoît A; Ilinova E; Beaudou B; Debord B; Gérôme F; Benabid F
    Opt Lett; 2017 Oct; 42(19):3896-3899. PubMed ID: 28957155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of atomic hydrogen in flames using picosecond two-color two-photon-resonant six-wave-mixing spectroscopy.
    Kulatilaka WD; Lucht RP; Roy S; Gord JR; Settersten TB
    Appl Opt; 2007 Jul; 46(19):3921-7. PubMed ID: 17571128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulse-width-dependent critical power for self-focusing of ultrashort laser pulses in bulk dielectrics.
    Kudryashov SI; Danilov PA; Kuzmin EV; Gulina YS; Rupasov AE; Krasin GK; Zubarev IG; Levchenko AO; Kovalev MS; Pakholchuk PP; Ostrikov SA; Ionin AA
    Opt Lett; 2022 Jul; 47(14):3487-3490. PubMed ID: 35838709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Picosecond anti-Stokes generation in a photonic-crystal fiber for interferometric CARS microscopy.
    Andresen ER; Keiding SR; Potma EO
    Opt Express; 2006 Aug; 14(16):7246-51. PubMed ID: 19529094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a high power Yb fiber-based laser compatible with commercial optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy.
    Hage CH; Boisset S; Ibrahim A; Morin F; Hoenninger C; Grunske T; Souissi S; Heliot L; Leray A
    Microsc Res Tech; 2014 Jun; 77(6):422-30. PubMed ID: 24710794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intra-pulse Raman frequency shift versus conventional Stokes generation of diode laser pulses in optical fibers.
    Kuzin E; Mendoza-Vazquez S; Gutierrez-Gutierrez J; Ibarra-Escamilla B; Haus J; Rojas-Laguna R
    Opt Express; 2005 May; 13(9):3388-96. PubMed ID: 19495241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of 360 ps laser pulse with 3 J energy by stimulated Brillouin scattering with a nonfocusing scheme.
    Zhu X; Wang Y; Lu Z; Zhang H
    Opt Express; 2015 Sep; 23(18):23318-28. PubMed ID: 26368433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ophthalmic surgeries on
    Körber M; Fellinger J; Fritsche M; Giese A; Kostourou K; Kopf D; Kottcke M; Luciani F; Schmidbauer JM; Wenk J; Braun B
    Front Med (Lausanne); 2024; 11():1345976. PubMed ID: 38390574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracavity pumped parametric Raman nanosecond crystalline anti-Stokes laser at 954 nm with collinear orthogonally polarized beam interaction at tangential phase matching.
    Smetanin SN; Jelínek M; Tereshchenko DP; Kubeček V
    Opt Express; 2018 Sep; 26(18):22637-22649. PubMed ID: 30184921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical up-conversion-based cross-correlation for characterization of sub-nanosecond terahertz-wave pulses.
    Takida Y; Nawata K; Notake T; Otsuji T; Minamide H
    Opt Express; 2022 Mar; 30(7):11217-11227. PubMed ID: 35473070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulse-to-pulse wavelength switching of a nanosecond fiber laser by four-wave mixing seeded stimulated Raman amplification.
    Eibl M; Karpf S; Hakert H; Blömker T; Kolb JP; Jirauschek C; Huber R
    Opt Lett; 2017 Nov; 42(21):4406-4409. PubMed ID: 29088175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient picosecond diamond Raman laser at 1240 and 1485 nm.
    Warrier AM; Lin J; Pask HM; Mildren RP; Coutts DW; Spence DJ
    Opt Express; 2014 Feb; 22(3):3325-33. PubMed ID: 24663623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-pulse broadband stimulated Raman scattering in carbon disulfide via resonance cascading.
    Li S; Wang Y; Liu X; Sun C; Fang W; Men Z
    Appl Opt; 2021 Oct; 60(28):8787-8791. PubMed ID: 34613104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.