BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 35893843)

  • 1. Advances in Genes-Encoding Transporters for Cadmium Uptake, Translocation, and Accumulation in Plants.
    Tao J; Lu L
    Toxics; 2022 Jul; 10(8):. PubMed ID: 35893843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of low cadmium accumulation in crops: A comprehensive overview from rhizosphere soil to edible parts.
    Lin L; Wu X; Deng X; Lin Z; Liu C; Zhang J; He T; Yi Y; Liu H; Wang Y; Sun W; Xu Z
    Environ Res; 2024 Mar; 245():118054. PubMed ID: 38157968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NRAMPs and manganese: Magic keys to reduce cadmium toxicity and accumulation in plants.
    Kanwal F; Riaz A; Ali S; Zhang G
    Sci Total Environ; 2024 Apr; 921():171005. PubMed ID: 38378068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of a novel cadmium-regulated Yellow Stripe-Like transporter (SnYSL3) in Solanum nigrum.
    Feng S; Tan J; Zhang Y; Liang S; Xiang S; Wang H; Chai T
    Plant Cell Rep; 2017 Feb; 36(2):281-296. PubMed ID: 27866260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron deficiency triggered transcriptome changes in bread wheat.
    Wang M; Gong J; Bhullar NK
    Comput Struct Biotechnol J; 2020; 18():2709-2722. PubMed ID: 33101609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Cadmium on Plants in Terms of the Response of Gene Expression Level and Activity.
    Moravčíková D; Žiarovská J
    Plants (Basel); 2023 Apr; 12(9):. PubMed ID: 37176906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of endophytic bacterium SaMR12 on Sedum alfredii Hance metal ion uptake and the expression of three transporter family genes after cadmium exposure.
    Pan F; Luo S; Shen J; Wang Q; Ye J; Meng Q; Wu Y; Chen B; Cao X; Yang X; Feng Y
    Environ Sci Pollut Res Int; 2017 Apr; 24(10):9350-9360. PubMed ID: 28233204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide identification of Cd-responsive NRAMP transporter genes and analyzing expression of NRAMP 1 mediated by miR167 in Brassica napus.
    Meng JG; Zhang XD; Tan SK; Zhao KX; Yang ZM
    Biometals; 2017 Dec; 30(6):917-931. PubMed ID: 28993932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Annotation and characterization of Cd-responsive metal transporter genes in rapeseed (Brassica napus).
    Zhang XD; Meng JG; Zhao KX; Chen X; Yang ZM
    Biometals; 2018 Feb; 31(1):107-121. PubMed ID: 29250721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transporters and ascorbate-glutathione metabolism for differential cadmium accumulation and tolerance in two contrasting willow genotypes.
    Han X; Zhang Y; Yu M; Zhang J; Xu D; Lu Z; Qiao G; Qiu W; Zhuo R
    Tree Physiol; 2020 Jul; 40(8):1126-1142. PubMed ID: 32175583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effects of the Endophytic Bacterium
    Chen B; Luo S; Wu Y; Ye J; Wang Q; Xu X; Pan F; Khan KY; Feng Y; Yang X
    Front Microbiol; 2017; 8():2538. PubMed ID: 29312228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melatonin confers cadmium tolerance by modulating critical heavy metal chelators and transporters in radish plants.
    Xu L; Zhang F; Tang M; Wang Y; Dong J; Ying J; Chen Y; Hu B; Li C; Liu L
    J Pineal Res; 2020 Aug; 69(1):e12659. PubMed ID: 32323337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of mutations allowing Natural Resistance Associated Macrophage Proteins (NRAMP) to discriminate against cadmium.
    Pottier M; Oomen R; Picco C; Giraudat J; Scholz-Starke J; Richaud P; Carpaneto A; Thomine S
    Plant J; 2015 Aug; 83(4):625-37. PubMed ID: 26088788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The expression of heterologous Fe (III) phytosiderophore transporter HvYS1 in rice increases Fe uptake, translocation and seed loading and excludes heavy metals by selective Fe transport.
    Banakar R; Alvarez Fernández Á; Abadía J; Capell T; Christou P
    Plant Biotechnol J; 2017 Apr; 15(4):423-432. PubMed ID: 27633505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants.
    Socha AL; Guerinot ML
    Front Plant Sci; 2014; 5():106. PubMed ID: 24744764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-Wide Identification and Characterization of Four Gene Families Putatively Involved in Cadmium Uptake, Translocation and Sequestration in Mulberry.
    Fan W; Liu C; Cao B; Qin M; Long D; Xiang Z; Zhao A
    Front Plant Sci; 2018; 9():879. PubMed ID: 30008726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice.
    Liu XS; Feng SJ; Zhang BQ; Wang MQ; Cao HW; Rono JK; Chen X; Yang ZM
    BMC Plant Biol; 2019 Jun; 19(1):283. PubMed ID: 31248369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population).
    Küpper H; Kochian LV
    New Phytol; 2010 Jan; 185(1):114-29. PubMed ID: 19843304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Put the metal to the petal: metal uptake and transport throughout plants.
    Colangelo EP; Guerinot ML
    Curr Opin Plant Biol; 2006 Jun; 9(3):322-30. PubMed ID: 16616607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal Transport Systems in Plants.
    Huang S; Yamaji N; Ma JF
    Annu Rev Plant Biol; 2024 Feb; ():. PubMed ID: 38382903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.