These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
642 related articles for article (PubMed ID: 35894128)
1. Peimine inhibits variants of SARS-CoV-2 cell entry via blocking the interaction between viral spike protein and ACE2. Wang WJ; Chen Y; Su WC; Liu YY; Shen WJ; Chang WC; Huang ST; Lin CW; Wang YC; Yang CS; Hou MH; Chou YC; Wu YC; Wang SC; Hung MC J Food Biochem; 2022 Oct; 46(10):e14354. PubMed ID: 35894128 [TBL] [Abstract][Full Text] [Related]
2. Computational modeling of the effect of five mutations on the structure of the ACE2 receptor and their correlation with infectivity and virulence of some emerged variants of SARS-CoV-2 suggests mechanisms of binding affinity dysregulation. Rodriguez JA; Gonzalez J; Arboleda-Bustos CE; Mendoza N; Martinez C; Pinzon A Chem Biol Interact; 2022 Dec; 368():110244. PubMed ID: 36336003 [TBL] [Abstract][Full Text] [Related]
4. An Stalin A; Lin D; Senthamarai Kannan B; Feng Y; Wang Y; Zhao W; Ignacimuthu S; Wei DQ; Chen Y J Biomol Struct Dyn; 2022 Oct; 40(16):7408-7423. PubMed ID: 33685364 [TBL] [Abstract][Full Text] [Related]
5. Competitive SARS-CoV-2 Serology Reveals Most Antibodies Targeting the Spike Receptor-Binding Domain Compete for ACE2 Binding. Byrnes JR; Zhou XX; Lui I; Elledge SK; Glasgow JE; Lim SA; Loudermilk RP; Chiu CY; Wang TT; Wilson MR; Leung KK; Wells JA mSphere; 2020 Sep; 5(5):. PubMed ID: 32938700 [TBL] [Abstract][Full Text] [Related]
6. A molecular docking study revealed that synthetic peptides induced conformational changes in the structure of SARS-CoV-2 spike glycoprotein, disrupting the interaction with human ACE2 receptor. Souza PFN; Lopes FES; Amaral JL; Freitas CDT; Oliveira JTA Int J Biol Macromol; 2020 Dec; 164():66-76. PubMed ID: 32693122 [TBL] [Abstract][Full Text] [Related]
7. In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection. Braz HLB; Silveira JAM; Marinho AD; de Moraes MEA; Moraes Filho MO; Monteiro HSA; Jorge RJB Int J Antimicrob Agents; 2020 Sep; 56(3):106119. PubMed ID: 32738306 [TBL] [Abstract][Full Text] [Related]
8. Investigation of the genetic variation in ACE2 on the structural recognition by the novel coronavirus (SARS-CoV-2). Guo X; Chen Z; Xia Y; Lin W; Li H J Transl Med; 2020 Aug; 18(1):321. PubMed ID: 32831104 [TBL] [Abstract][Full Text] [Related]
9. Evolutionary Arms Race between Virus and Host Drives Genetic Diversity in Bat Severe Acute Respiratory Syndrome-Related Coronavirus Spike Genes. Guo H; Hu BJ; Yang XL; Zeng LP; Li B; Ouyang S; Shi ZL J Virol; 2020 Sep; 94(20):. PubMed ID: 32699095 [TBL] [Abstract][Full Text] [Related]
10. Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: Similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism. Othman H; Bouslama Z; Brandenburg JT; da Rocha J; Hamdi Y; Ghedira K; Srairi-Abid N; Hazelhurst S Biochem Biophys Res Commun; 2020 Jun; 527(3):702-708. PubMed ID: 32410735 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of the ACE2-SARS-CoV-2/SARS-CoV spike protein interface reveal unique mechanisms. Ali A; Vijayan R Sci Rep; 2020 Aug; 10(1):14214. PubMed ID: 32848162 [TBL] [Abstract][Full Text] [Related]
13. Characterization of SARS-CoV-2 Variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 by Cell Entry and Immune Evasion. Ren W; Ju X; Gong M; Lan J; Yu Y; Long Q; Kenney DJ; O'Connell AK; Zhang Y; Zhong J; Zhong G; Douam F; Wang X; Huang A; Zhang R; Ding Q mBio; 2022 Apr; 13(2):e0009922. PubMed ID: 35266815 [TBL] [Abstract][Full Text] [Related]
14. SARS-CoV-2 spike protein variant binding affinity to an angiotensin-converting enzyme 2 fusion glycoproteins. Matthews AM; Biel TG; Ortega-Rodriguez U; Falkowski VM; Bush X; Faison T; Xie H; Agarabi C; Rao VA; Ju T PLoS One; 2022; 17(12):e0278294. PubMed ID: 36472974 [TBL] [Abstract][Full Text] [Related]
15. Molecular dynamic simulation analysis of SARS-CoV-2 spike mutations and evaluation of ACE2 from pets and wild animals for infection risk. Chen P; Wang J; Xu X; Li Y; Zhu Y; Li X; Li M; Hao P Comput Biol Chem; 2022 Feb; 96():107613. PubMed ID: 34896769 [TBL] [Abstract][Full Text] [Related]
16. Understanding the molecular interaction of SARS-CoV-2 spike mutants with ACE2 (angiotensin converting enzyme 2). Istifli ES; Netz PA; Sihoglu Tepe A; Sarikurkcu C; Tepe B J Biomol Struct Dyn; 2022; 40(23):12760-12771. PubMed ID: 34495817 [TBL] [Abstract][Full Text] [Related]
17. Microalgae as an Efficient Vehicle for the Production and Targeted Delivery of Therapeutic Glycoproteins against SARS-CoV-2 Variants. Dehghani J; Movafeghi A; Mathieu-Rivet E; Mati-Baouche N; Calbo S; Lerouge P; Bardor M Mar Drugs; 2022 Oct; 20(11):. PubMed ID: 36354980 [TBL] [Abstract][Full Text] [Related]
18. Tinocordiside from Balkrishna A; Pokhrel S; Varshney A Comb Chem High Throughput Screen; 2021; 24(10):1795-1802. PubMed ID: 33172372 [TBL] [Abstract][Full Text] [Related]
19. Mulberry Component Kuwanon C Exerts Potent Therapeutic Efficacy In Vitro against COVID-19 by Blocking the SARS-CoV-2 Spike S1 RBD:ACE2 Receptor Interaction. Kim YS; Kwon EB; Kim B; Chung HS; Choi G; Kim YH; Choi JG Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293371 [TBL] [Abstract][Full Text] [Related]
20. Investigation of nonsynonymous mutations in the spike protein of SARS-CoV-2 and its interaction with the ACE2 receptor by molecular docking and MM/GBSA approach. Aljindan RY; Al-Subaie AM; Al-Ohali AI; Kumar D T; Doss C GP; Kamaraj B Comput Biol Med; 2021 Aug; 135():104654. PubMed ID: 34346317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]