These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 35894232)
1. Guanidinoacetic acid provides superior cardioprotection to its combined use with betaine and (or) creatine in HIIT-trained rats. Prokic VZ; Rankovic MR; Draginic ND; Andjic MM; Sretenovic JZ; Zivkovic VI; Jeremic JN; Milinkovic MV; Bolevich S; Jakovljevic VLJ; Pantovic SB Can J Physiol Pharmacol; 2022 Aug; 100(8):772-786. PubMed ID: 35894232 [TBL] [Abstract][Full Text] [Related]
2. Co-administration of methyl donors along with guanidinoacetic acid reduces the incidence of hyperhomocysteinaemia compared with guanidinoacetic acid administration alone. Ostojic SM; Niess B; Stojanovic M; Obrenovic M Br J Nutr; 2013 Sep; 110(5):865-70. PubMed ID: 23351309 [TBL] [Abstract][Full Text] [Related]
3. High-intensity interval training increases myocardial levels of Klotho and protects the heart against ischaemia-reperfusion injury. Ramez M; Ramezani F; Nasirinezhad F; Rajabi H Exp Physiol; 2020 Apr; 105(4):652-665. PubMed ID: 32052504 [TBL] [Abstract][Full Text] [Related]
4. Guanidinoacetic acid as a partial replacement to arginine with or without betaine in broilers offered moderately low crude protein diets. Sharma NK; Cadogan DJ; Chrystal PV; McGilchrist P; Wilkinson SJ; Inhuber V; Moss AF Poult Sci; 2022 Apr; 101(4):101692. PubMed ID: 35124444 [TBL] [Abstract][Full Text] [Related]
5. Hyperhomocysteinemia induced by guanidinoacetic acid is effectively suppressed by choline and betaine in rats. Setoue M; Ohuchi S; Morita T; Sugiyama K Biosci Biotechnol Biochem; 2008 Jul; 72(7):1696-703. PubMed ID: 18603787 [TBL] [Abstract][Full Text] [Related]
6. Guanidinoacetic acid supplementation improves feed conversion in broilers subjected to heat stress associated with muscle creatine loading and arginine sparing. Majdeddin M; Braun U; Lemme A; Golian A; Kermanshahi H; De Smet S; Michiels J Poult Sci; 2020 Sep; 99(9):4442-4453. PubMed ID: 32867988 [TBL] [Abstract][Full Text] [Related]
7. Guanidinoacetic acid with creatine compared with creatine alone for tissue creatine content, hyperhomocysteinemia, and exercise performance: A randomized, double-blind superiority trial. Semeredi S; Stajer V; Ostojic J; Vranes M; Ostojic SM Nutrition; 2019 Jan; 57():162-166. PubMed ID: 30170305 [TBL] [Abstract][Full Text] [Related]
8. Influence of high-intensity interval training and intermittent fasting on myocardium apoptosis pathway and cardiac morphology of healthy rats. Carvalho MR; Mendonça MLM; Oliveira JML; Romanenghi RB; Morais CS; Ota GE; Lima ARR; Oliveira RJ; Filiú WFO; Okoshi K; Okoshi MP; Oliveira-Junior SA; Martinez PF Life Sci; 2021 Jan; 264():118697. PubMed ID: 33130084 [TBL] [Abstract][Full Text] [Related]
9. The impact of aerobic and anaerobic training regimes on blood pressure in normotensive and hypertensive rats: focus on redox changes. Jakovljevic B; Nikolic Turnic T; Jeremic N; Jeremic J; Bradic J; Ravic M; Jakovljevic VL; Jelic D; Radovanovic D; Pechanova O; Zivkovic V Mol Cell Biochem; 2019 Apr; 454(1-2):111-121. PubMed ID: 30311109 [TBL] [Abstract][Full Text] [Related]
10. Creatine prevents the inhibition of energy metabolism and lipid peroxidation in rats subjected to GAA administration. Kolling J; Wyse AT Metab Brain Dis; 2010 Sep; 25(3):331-8. PubMed ID: 20830606 [TBL] [Abstract][Full Text] [Related]
11. Effects of guanidinoacetic acid on growth performance, creatine metabolism and plasma amino acid profile in broilers. He D; Yang L; Li J; Dong B; Lai W; Zhang L J Anim Physiol Anim Nutr (Berl); 2019 May; 103(3):766-773. PubMed ID: 30941826 [TBL] [Abstract][Full Text] [Related]
12. Effect of post-ruminal guanidinoacetic acid supplementation on creatine synthesis and plasma homocysteine concentrations in cattle. Ardalan M; Batista ED; Titgemeyer EC J Anim Sci; 2020 Mar; 98(3):. PubMed ID: 32152623 [TBL] [Abstract][Full Text] [Related]
13. Suppression effects of betaine-enriched spinach on hyperhomocysteinemia induced by guanidinoacetic acid and choline deficiency in rats. Liu YQ; Jia Z; Han F; Inakuma T; Miyashita T; Sugiyama K; Sun LC; Xiang XS; Huang ZW ScientificWorldJournal; 2014; 2014():904501. PubMed ID: 25250392 [TBL] [Abstract][Full Text] [Related]
14. High-intensity interval training mitigates the progression of periodontitis and improves behavioural aspects in rats. Pereira RRS; Castro GB; Magalhães CODE; Costa KB; Garcia BCC; Silva G; Carvalho JDCL; Machado ART; Vieira ER; Cassilhas RC; Pereira LJ; Dias-Peixoto MF; Andrade EF J Clin Periodontol; 2024 Sep; 51(9):1222-1235. PubMed ID: 38798054 [TBL] [Abstract][Full Text] [Related]
15. Effects of dietary guanidinoacetic acid on growth performance, guanidinoacetic acid absorption and creatine metabolism of lambs. Zhang S; Zang C; Pan J; Ma C; Wang C; Li X; Cai W; Yang K PLoS One; 2022; 17(3):e0264864. PubMed ID: 35275964 [TBL] [Abstract][Full Text] [Related]
16. The impact of high-intensity interval training and moderate-intensity continuous training regimes on cardiodynamic parameters in isolated heart of normotensive and hypertensive rats. Jakovljevic B; Nikolic Turnic T; Jeremic N; Savic M; Jeremic J; Srejovic I; Belic B; Ponorac N; Jakovljevic V; Zivkovic V Can J Physiol Pharmacol; 2019 Jul; 97(7):631-637. PubMed ID: 30735432 [TBL] [Abstract][Full Text] [Related]
17. Cross-talk between guanidinoacetate neurotoxicity, memory and possible neuroprotective role of creatine. Marques EP; Ferreira FS; Santos TM; Prezzi CA; Martins LAM; Bobermin LD; Quincozes-Santos A; Wyse ATS Biochim Biophys Acta Mol Basis Dis; 2019 Nov; 1865(11):165529. PubMed ID: 31398469 [TBL] [Abstract][Full Text] [Related]