BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35894777)

  • 1. Membrane stabilization
    Niu Q; Gao S; Liu X; Chong J; Ren L; Zhu K; Shi W; Yuan X
    J Mater Chem B; 2022 Aug; 10(31):6038-6048. PubMed ID: 35894777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facilitating trehalose entry into hRBCs at 4 °C by alkylated ε-poly(L-lysine) for glycerol-free cryopreservation.
    Liu X; Gao S; Niu Q; Zhu K; Ren L; Yuan X
    J Mater Chem B; 2022 Feb; 10(7):1042-1054. PubMed ID: 35080234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryopreservation of human erythrocytes through high intracellular trehalose with membrane stabilization of maltotriose-grafted ε-poly(L-lysine).
    Gao S; Niu Q; Liu X; Zhu C; Chong J; Ren L; Zhu K; Yuan X
    J Mater Chem B; 2022 Jun; 10(23):4452-4462. PubMed ID: 35604178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of Trehalose Lipids with Dissociative Trehalose Enables Cryopreservation of Human RBCs.
    Wang Y; Gao S; Zhu K; Ren L; Yuan X
    ACS Biomater Sci Eng; 2023 Jan; 9(1):498-507. PubMed ID: 36577138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apatite nanoparticles strongly improve red blood cell cryopreservation by mediating trehalose delivery via enhanced membrane permeation.
    Stefanic M; Ward K; Tawfik H; Seemann R; Baulin V; Guo Y; Fleury JB; Drouet C
    Biomaterials; 2017 Sep; 140():138-149. PubMed ID: 28649014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Achieving high intracellular trehalose in hRBCs by reversible membrane perturbation of maltopyranosides with synergistic membrane protection of macromolecular protectants.
    Liu X; Gao S; Ren L; Yuan X
    Biomater Adv; 2022 Oct; 141():213114. PubMed ID: 36113360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comb-like Pseudopeptides Enable Very Rapid and Efficient Intracellular Trehalose Delivery for Enhanced Cryopreservation of Erythrocytes.
    Chen S; Wu L; Ren J; Bemmer V; Zajicek R; Chen R
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):28941-28951. PubMed ID: 32496048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trehalose-functional glycopeptide enhances glycerol-free cryopreservation of red blood cells.
    Liu B; Zhang Q; Zhao Y; Ren L; Yuan X
    J Mater Chem B; 2019 Sep; 7(37):5695-5703. PubMed ID: 31482162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining endocytic and freezing-induced trehalose uptake for cryopreservation of mammalian cells.
    Zhang M; Oldenhof H; Sieme H; Wolkers WF
    Biotechnol Prog; 2017 Jan; 33(1):229-235. PubMed ID: 27802564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased cryosurvival of osteosarcoma cells using an amphipathic pH-responsive polymer for trehalose uptake.
    Mercado SA; Slater NK
    Cryobiology; 2016 Oct; 73(2):175-80. PubMed ID: 27497662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Dynamic Membrane-Active Glycopeptide for Enhanced Protection of Human Red Blood Cells against Freeze-Stress.
    Gao S; Niu Q; Wang Y; Ren L; Chong J; Zhu K; Yuan X
    Adv Healthc Mater; 2023 Apr; 12(10):e2202516. PubMed ID: 36548128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular sugars improve survival of human red blood cells cryopreserved at -80 degrees C in the presence of polyvinyl pyrrolidone and human serum albumin.
    Quan G; Zhang L; Guo Y; Liu M; Wang J; Wang Y; Dong B; Liu A; Zhang J; Han Y
    Cryo Letters; 2007; 28(2):95-108. PubMed ID: 17522728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amphipathic polymer-mediated uptake of trehalose for dimethyl sulfoxide-free human cell cryopreservation.
    Sharp DM; Picken A; Morris TJ; Hewitt CJ; Coopman K; Slater NK
    Cryobiology; 2013 Dec; 67(3):305-11. PubMed ID: 24045066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of intracellular trehalose concentration and pre-freeze cell volume on the cryosurvival of rapidly frozen human erythrocytes.
    Lynch AL; Slater NK
    Cryobiology; 2011 Aug; 63(1):26-31. PubMed ID: 21530502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic effects of liposomes, trehalose, and hydroxyethyl starch for cryopreservation of human erythrocytes.
    Stoll C; Holovati JL; Acker JP; Wolkers WF
    Biotechnol Prog; 2012; 28(2):364-71. PubMed ID: 22275294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of trehalose-loaded liposomes on red blood cell response to freezing and post-thaw membrane quality.
    Holovati JL; Gyongyossy-Issa MIC; Acker JP
    Cryobiology; 2009 Feb; 58(1):75-83. PubMed ID: 19059392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Icephilic ACTIVE Glycopeptides for Cryopreservation of Human Erythrocytes.
    Gao S; Zhu K; Zhang Q; Niu Q; Chong J; Ren L; Yuan X
    Biomacromolecules; 2022 Feb; 23(2):530-542. PubMed ID: 34965723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apatite nanoparticles mediate intracellular delivery of trehalose and increase survival of cryopreserved cells.
    Wang B; Liu G; Balamurugan V; Sui Y; Wang G; Song Y; Chang Q
    Cryobiology; 2019 Feb; 86():103-110. PubMed ID: 30458174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trehalose in glycerol-free freezing extender enhances post-thaw survival of boar spermatozoa.
    Athurupana R; Takahashi D; Ioki S; Funahashi H
    J Reprod Dev; 2015; 61(3):205-10. PubMed ID: 25754239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loading red blood cells with trehalose: a step towards biostabilization.
    Satpathy GR; Török Z; Bali R; Dwyre DM; Little E; Walker NJ; Tablin F; Crowe JH; Tsvetkova NM
    Cryobiology; 2004 Oct; 49(2):123-36. PubMed ID: 15351684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.