BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35894848)

  • 1. Superstructure Control of Anionic Redox Behavior in Manganese-Based Cathode Materials for Li-Ion Batteries.
    Yang Z; Zhong J; Zheng C; Wei Z; Feng J; Li J
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35822-35832. PubMed ID: 35894848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A High-Capacity O2-Type Li-Rich Cathode Material with a Single-Layer Li
    Zuo Y; Li B; Jiang N; Chu W; Zhang H; Zou R; Xia D
    Adv Mater; 2018 Apr; 30(16):e1707255. PubMed ID: 29532965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Activity and Reversibility of Anionic Redox by Tuning Lithium Vacancies in Li-Rich Cathode Materials.
    Li S; Zhang H; Li H; Zhang S; Zhu B; Wang S; Zheng J; Liu F; Zhang Z; Lai Y
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39480-39490. PubMed ID: 34382789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy Fluorination via Ion Exchange Achieves High-Performance Li-Mn-O-F Layered Cathode for Li-Ion Batteries.
    Lu J; Cao B; Hu B; Liao Y; Qi R; Liu J; Zuo C; Xu S; Li Z; Chen C; Zhang M; Pan F
    Small; 2022 Feb; 18(6):e2103499. PubMed ID: 34850552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Li
    Luo N; Feng L; Yin H; Stein A; Huang S; Hou Z; Truhlar DG
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):29832-29843. PubMed ID: 35735752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of Local Charge Distribution Stabilized the Anionic Redox Process in Mn-Based P2-Type Layered Oxides.
    Wang H; Zhang X; Zhang H; Tian Y; Zhang Q; Zhang X; Yang S; Jia M; Pan H; Sheng C; Yan X
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):11691-11702. PubMed ID: 36812350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the Discrepancy of Defect Kinetics on Anionic Redox in Lithium-Rich Cathode Oxides.
    Jiang W; Yin C; Xia Y; Qiu B; Guo H; Cui H; Hu F; Liu Z
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14023-14034. PubMed ID: 30916541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating and Mitigating the Degradation of Cationic-Anionic Redox Processes in Li
    Zhou K; Zheng S; Liu H; Zhang C; Gao H; Luo M; Xu N; Xiang Y; Liu X; Zhong G; Yang Y
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45674-45682. PubMed ID: 31714058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formulating Local Environment of Oxygen Mitigates Voltage Hysteresis in Li-Rich Materials.
    Zhang M; Qiu L; Hua W; Song Y; Deng Y; Wu Z; Zhu Y; Zhong B; Chou S; Dou S; Xiao Y; Guo X
    Adv Mater; 2024 Apr; 36(16):e2311814. PubMed ID: 38194156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure design enables stable anionic and cationic redox chemistry in a T2-type Li-excess layered oxide cathode.
    Cao X; Li H; Qiao Y; Jia M; Kitaura H; Zhang J; He P; Cabana J; Zhou H
    Sci Bull (Beijing); 2022 Feb; 67(4):381-388. PubMed ID: 36546090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilized Anionic Redox by Rational Structural Design from Surface to Bulk for Long-Life Fast-Charging Li-Rich Oxide Cathodes.
    Li S; Guan C; Zhang W; Li H; Gao X; Zhang S; Li S; Lai Y; Zhang Z
    Small; 2023 Oct; 19(41):e2303539. PubMed ID: 37287389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin of the Seriously Limited Anionic Redox Reaction of Li-Rich Cathodes in Sulfide All-Solid-State Batteries.
    Yang Y; Hu N; Zhang YH; Zheng Y; Hu Z; Kuo CY; Lin HJ; Chen CT; Chan TS; Kao CW; Jin Y; Ma J; Cui G
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30060-30069. PubMed ID: 37314432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing Voltage Hysteresis in Li-Rich Sulfide Cathodes by Incorporation of Mn.
    Li X; Kim SS; Qian MD; Patheria ES; Andrews JL; Morrell CT; Melot BC; See KA
    Chem Mater; 2024 Jun; 36(11):5687-5697. PubMed ID: 38883428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational Design of Na(Li
    Kim D; Cho M; Cho K
    Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28635039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the Anionic Redox Chemistry in Cathode Materials for High-Energy-Density Sodium-Ion Batteries.
    Shoaib M; Thangadurai V
    ACS Omega; 2022 Oct; 7(39):34710-34717. PubMed ID: 36211051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing the Electrochemical Mechanism of Cationic/Anionic Redox on Li-Rich Layered Oxides via Controlling the Distribution of Primary Particle Size.
    Lu L; Hu Y; Jiang H; Zhu C; Chen J; Li C
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):25796-25803. PubMed ID: 31124653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and Thermodynamic Understandings in Mn-Based Sodium Layered Oxides during Anionic Redox.
    Kang SM; Kim D; Lee KS; Kim MS; Jin A; Park JH; Ahn CY; Jeon TY; Jung YH; Yu SH; Mun J; Sung YE
    Adv Sci (Weinh); 2020 Aug; 7(16):2001263. PubMed ID: 32832368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen-Based Anion Redox for Lithium Batteries.
    Li M; Bi X; Amine K; Lu J
    Acc Chem Res; 2020 Aug; 53(8):1436-1444. PubMed ID: 32634307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Cobalt-Free Li(Li
    Wei H; Cheng X; Fan H; Shan Q; An S; Qiu X; Jia G
    ChemSusChem; 2019 Jun; 12(11):2471-2479. PubMed ID: 30816009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manganese-Based Na-Rich Materials Boost Anionic Redox in High-Performance Layered Cathodes for Sodium-Ion Batteries.
    Zhang X; Qiao Y; Guo S; Jiang K; Xu S; Xu H; Wang P; He P; Zhou H
    Adv Mater; 2019 Jul; 31(27):e1807770. PubMed ID: 31074542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.