BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35894940)

  • 21. Reinventing heterochromatin in budding yeasts: Sir2 and the origin recognition complex take center stage.
    Hickman MA; Froyd CA; Rusche LN
    Eukaryot Cell; 2011 Sep; 10(9):1183-92. PubMed ID: 21764908
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Asymmetric positioning of nucleosomes and directional establishment of transcriptionally silent chromatin by Saccharomyces cerevisiae silencers.
    Zou Y; Yu Q; Bi X
    Mol Cell Biol; 2006 Oct; 26(20):7806-19. PubMed ID: 16908533
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Variants of the Sir4 Coiled-Coil Domain Improve Binding to Sir3 for Heterochromatin Formation in
    Samel A; Rudner A; Ehrenhofer-Murray AE
    G3 (Bethesda); 2017 Apr; 7(4):1117-1126. PubMed ID: 28188183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Yeast silent mating type loci form heterochromatic clusters through silencer protein-dependent long-range interactions.
    Miele A; Bystricky K; Dekker J
    PLoS Genet; 2009 May; 5(5):e1000478. PubMed ID: 19424429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural basis of the Sir1-origin recognition complex interaction in transcriptional silencing.
    Hou Z; Bernstein DA; Fox CA; Keck JL
    Proc Natl Acad Sci U S A; 2005 Jun; 102(24):8489-94. PubMed ID: 15932939
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A nonhistone protein-protein interaction required for assembly of the SIR complex and silent chromatin.
    Rudner AD; Hall BE; Ellenberger T; Moazed D
    Mol Cell Biol; 2005 Jun; 25(11):4514-28. PubMed ID: 15899856
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A region of the nucleosome required for multiple types of transcriptional silencing in Saccharomyces cerevisiae.
    Prescott ET; Safi A; Rusche LN
    Genetics; 2011 Jul; 188(3):535-48. PubMed ID: 21546544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The origin recognition complex interacts with a subset of metabolic genes tightly linked to origins of replication.
    Shor E; Warren CL; Tietjen J; Hou Z; Müller U; Alborelli I; Gohard FH; Yemm AI; Borisov L; Broach JR; Weinreich M; Nieduszynski CA; Ansari AZ; Fox CA
    PLoS Genet; 2009 Dec; 5(12):e1000755. PubMed ID: 19997491
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The budding yeast silencing protein Sir1 is a functional component of centromeric chromatin.
    Sharp JA; Krawitz DC; Gardner KA; Fox CA; Kaufman PD
    Genes Dev; 2003 Oct; 17(19):2356-61. PubMed ID: 12975325
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential DNA affinity specifies roles for the origin recognition complex in budding yeast heterochromatin.
    Palacios DeBeer MA; Muller U; Fox CA
    Genes Dev; 2003 Aug; 17(15):1817-22. PubMed ID: 12897051
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthetic lethal screens identify gene silencing processes in yeast and implicate the acetylated amino terminus of Sir3 in recognition of the nucleosome core.
    van Welsem T; Frederiks F; Verzijlbergen KF; Faber AW; Nelson ZW; Egan DA; Gottschling DE; van Leeuwen F
    Mol Cell Biol; 2008 Jun; 28(11):3861-72. PubMed ID: 18391024
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Concerted interaction between origin recognition complex (ORC), nucleosomes and replication origin DNA ensures stable ORC-origin binding.
    Hizume K; Yagura M; Araki H
    Genes Cells; 2013 Sep; 18(9):764-79. PubMed ID: 23795651
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A model for step-wise assembly of heterochromatin in yeast.
    Moazed D; Rudner AD; Huang J; Hoppe GJ; Tanny JC
    Novartis Found Symp; 2004; 259():48-56; discussion 56-62, 163-9. PubMed ID: 15171246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Establishment and function of chromatin organization at replication origins.
    Chacin E; Reusswig KU; Furtmeier J; Bansal P; Karl LA; Pfander B; Straub T; Korber P; Kurat CF
    Nature; 2023 Apr; 616(7958):836-842. PubMed ID: 37020028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dimerization of Sir3 via its C-terminal winged helix domain is essential for yeast heterochromatin formation.
    Oppikofer M; Kueng S; Keusch JJ; Hassler M; Ladurner AG; Gut H; Gasser SM
    EMBO J; 2013 Feb; 32(3):437-49. PubMed ID: 23299941
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maintenance of heterochromatin boundary and nucleosome composition at promoters by the Asf1 histone chaperone and SWR1-C chromatin remodeler in Saccharomyces cerevisiae.
    Lu PY; Kobor MS
    Genetics; 2014 May; 197(1):133-45. PubMed ID: 24578349
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstitution of heterochromatin-dependent transcriptional gene silencing.
    Johnson A; Li G; Sikorski TW; Buratowski S; Woodcock CL; Moazed D
    Mol Cell; 2009 Sep; 35(6):769-81. PubMed ID: 19782027
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The origin recognition complex, SIR1, and the S phase requirement for silencing.
    Fox CA; Ehrenhofer-Murray AE; Loo S; Rine J
    Science; 1997 Jun; 276(5318):1547-51. PubMed ID: 9171055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct interactions promote eviction of the Sir3 heterochromatin protein by the SWI/SNF chromatin remodeling enzyme.
    Manning BJ; Peterson CL
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17827-32. PubMed ID: 25453095
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conversion of a replication origin to a silencer through a pathway shared by a Forkhead transcription factor and an S phase cyclin.
    Casey L; Patterson EE; Müller U; Fox CA
    Mol Biol Cell; 2008 Feb; 19(2):608-22. PubMed ID: 18045995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.