These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 35895194)

  • 1. A Straightforward High-Throughput Aboveground Phenotyping Platform for Small- to Medium-Sized Plants.
    Caldwell D; Iyer-Pascuzzi AS
    Methods Mol Biol; 2022; 2539():37-48. PubMed ID: 35895194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wireless Fixed Camera Network for Greenhouse-Based Plant Phenotyping.
    Shakoor N; Mockler TC
    Methods Mol Biol; 2022; 2539():49-56. PubMed ID: 35895195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput Phenotyping in Plant Stress Response: Methods and Potential Applications to Polyamine Field.
    Marko D; Briglia N; Summerer S; Petrozza A; Cellini F; Iannacone R
    Methods Mol Biol; 2018; 1694():373-388. PubMed ID: 29080181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Image-Based High-Throughput Detection and Phenotype Evaluation Method for Multiple Lettuce Varieties.
    Du J; Lu X; Fan J; Qin Y; Yang X; Guo X
    Front Plant Sci; 2020; 11():563386. PubMed ID: 33123178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nondestructive Determination of Nitrogen, Phosphorus and Potassium Contents in Greenhouse Tomato Plants Based on Multispectral Three-Dimensional Imaging.
    Sun G; Ding Y; Wang X; Lu W; Sun Y; Yu H
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31805657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performances Evaluation of a Low-Cost Platform for High-Resolution Plant Phenotyping.
    Rossi R; Leolini C; Costafreda-Aumedes S; Leolini L; Bindi M; Zaldei A; Moriondo M
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32498361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses - a review.
    Humplík JF; Lazár D; Husičková A; Spíchal L
    Plant Methods; 2015; 11():29. PubMed ID: 25904970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput phenotyping of plant shoots.
    Berger B; de Regt B; Tester M
    Methods Mol Biol; 2012; 918():9-20. PubMed ID: 22893282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital Biomass Accumulation Using High-Throughput Plant Phenotype Data Analysis.
    Rahaman MM; Ahsan MA; Gillani Z; Chen M
    J Integr Bioinform; 2017 Sep; 14(3):. PubMed ID: 28862986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Cost Automated Vectors and Modular Environmental Sensors for Plant Phenotyping.
    Bagley SA; Atkinson JA; Hunt H; Wilson MH; Pridmore TP; Wells DM
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32545168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated Analysis Platform: An Open-Source Information System for High-Throughput Plant Phenotyping.
    Klukas C; Chen D; Pape JM
    Plant Physiol; 2014 Jun; 165(2):506-518. PubMed ID: 24760818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake of cyclic C
    Bizzotto EC; Libralato G; de Natale A; Scanferla P; Vighi M; Marcomini A
    Sci Total Environ; 2024 May; 924():171613. PubMed ID: 38490415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity and plant growth-promoting functions of diazotrophic/N-scavenging bacteria isolated from the soils and rhizospheres of two species of Solanum.
    Zuluaga MYA; Lima Milani KM; Azeredo Gonçalves LS; Martinez de Oliveira AL
    PLoS One; 2020; 15(1):e0227422. PubMed ID: 31923250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy analysis of a multi-view stereo approach for phenotyping of tomato plants at the organ level.
    Rose JC; Paulus S; Kuhlmann H
    Sensors (Basel); 2015 Apr; 15(5):9651-65. PubMed ID: 25919368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A "Do-It-Yourself" phenotyping system: measuring growth and morphology throughout the diel cycle in rosette shaped plants.
    Dobrescu A; Scorza LCT; Tsaftaris SA; McCormick AJ
    Plant Methods; 2017; 13():95. PubMed ID: 29151842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the Biostimulant Action of Vegetal-Derived Protein Hydrolysates by High-Throughput Plant Phenotyping and Metabolomics: A Case Study on Tomato.
    Paul K; Sorrentino M; Lucini L; Rouphael Y; Cardarelli M; Bonini P; Reynaud H; Canaguier R; Trtílek M; Panzarová K; Colla G
    Front Plant Sci; 2019; 10():47. PubMed ID: 30800134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement Method Based on Multispectral Three-Dimensional Imaging for the Chlorophyll Contents of Greenhouse Tomato Plants.
    Sun G; Wang X; Sun Y; Ding Y; Lu W
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31366151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Source Data Fusion Improves Time-Series Phenotype Accuracy in Maize under a Field High-Throughput Phenotyping Platform.
    Li Y; Wen W; Fan J; Gou W; Gu S; Lu X; Yu Z; Wang X; Guo X
    Plant Phenomics; 2023; 5():0043. PubMed ID: 37223316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput phenotyping to dissect genotypic differences in safflower for drought tolerance.
    Joshi S; Thoday-Kennedy E; Daetwyler HD; Hayden M; Spangenberg G; Kant S
    PLoS One; 2021; 16(7):e0254908. PubMed ID: 34297757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform.
    Cabrera-Bosquet L; Fournier C; Brichet N; Welcker C; Suard B; Tardieu F
    New Phytol; 2016 Oct; 212(1):269-81. PubMed ID: 27258481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.