These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35895197)

  • 1. High-Throughput Extraction of Seed Traits Using Image Acquisition and Analysis.
    Zhang C; Sankaran S
    Methods Mol Biol; 2022; 2539():71-76. PubMed ID: 35895197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Throughput Phenotyping for Various Traits on Soybean Seeds Using Image Analysis.
    Baek J; Lee E; Kim N; Kim SL; Choi I; Ji H; Chung YS; Choi MS; Moon JK; Kim KH
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31906262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SmartGrain: high-throughput phenotyping software for measuring seed shape through image analysis.
    Tanabata T; Shibaya T; Hori K; Ebana K; Yano M
    Plant Physiol; 2012 Dec; 160(4):1871-80. PubMed ID: 23054566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Image-Based Phenotyping of Flowering Intensity in Cool-Season Crops.
    Zhang C; Craine WA; McGee RJ; Vandemark GJ; Davis JB; Brown J; Hulbert SH; Sankaran S
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32155830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping quantitative trait loci affecting Arabidopsis thaliana seed morphology features extracted computationally from images.
    Moore CR; Gronwall DS; Miller ND; Spalding EP
    G3 (Bethesda); 2013 Jan; 3(1):109-18. PubMed ID: 23316443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit.
    Thomas CL; Alcock TD; Graham NS; Hayden R; Matterson S; Wilson L; Young SD; Dupuy LX; White PJ; Hammond JP; Danku JM; Salt DE; Sweeney A; Bancroft I; Broadley MR
    BMC Plant Biol; 2016 Oct; 16(1):214. PubMed ID: 27716103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput Phenotyping of Morphological Seed and Fruit Characteristics Using X-Ray Computed Tomography.
    Liu W; Liu C; Jin J; Li D; Fu Y; Yuan X
    Front Plant Sci; 2020; 11():601475. PubMed ID: 33281857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer Vision and Less Complex Image Analyses to Monitor Potato Traits in Fields.
    Gao J; Westergaard JC; Alexandersson E
    Methods Mol Biol; 2021; 2354():273-299. PubMed ID: 34448165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light Drones for Basic In-Field Phenotyping and Precision Farming Applications: RGB Tools Based on Image Analysis.
    Pallottino F; Figorilli S; Cecchini C; Costa C
    Methods Mol Biol; 2021; 2264():269-278. PubMed ID: 33263916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image Harvest: an open-source platform for high-throughput plant image processing and analysis.
    Knecht AC; Campbell MT; Caprez A; Swanson DR; Walia H
    J Exp Bot; 2016 May; 67(11):3587-99. PubMed ID: 27141917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenotyping: New Windows into the Plant for Breeders.
    Watt M; Fiorani F; Usadel B; Rascher U; Muller O; Schurr U
    Annu Rev Plant Biol; 2020 Apr; 71():689-712. PubMed ID: 32097567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. P-TRAP: a Panicle TRAit Phenotyping tool.
    A L-Tam F; Adam H; Anjos Ad; Lorieux M; Larmande P; Ghesquière A; Jouannic S; Shahbazkia HR
    BMC Plant Biol; 2013 Aug; 13():122. PubMed ID: 23987653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome wide association study of agronomic and seed traits in a world collection of proso millet (Panicum miliaceum L.).
    Boukail S; Macharia M; Miculan M; Masoni A; Calamai A; Palchetti E; Dell'Acqua M
    BMC Plant Biol; 2021 Jul; 21(1):330. PubMed ID: 34243721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotyping of Plant Biomass and Performance Traits Using Remote Sensing Techniques in Pea (
    Quirós Vargas JJ; Zhang C; Smitchger JA; McGee RJ; Sankaran S
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31052251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crop phenotyping in a context of global change: What to measure and how to do it.
    Araus JL; Kefauver SC; Vergara-Díaz O; Gracia-Romero A; Rezzouk FZ; Segarra J; Buchaillot ML; Chang-Espino M; Vatter T; Sanchez-Bragado R; Fernandez-Gallego JA; Serret MD; Bort J
    J Integr Plant Biol; 2022 Feb; 64(2):592-618. PubMed ID: 34807514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digital phenotyping for quantification of genetic diversity in inbred guava (Psidium guajava) families.
    Krause W; Viana AP; Cavalcante NR; Ambrósio M; Santos EA; Vieira HD
    Genet Mol Res; 2017 Mar; 16(1):. PubMed ID: 28340267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ColourQuant: A High-Throughput Technique to Extract and Quantify Color Phenotypes from Plant Images.
    Li M; Frank MH; Migicovsky Z
    Methods Mol Biol; 2022; 2539():77-85. PubMed ID: 35895198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Training instance segmentation neural network with synthetic datasets for crop seed phenotyping.
    Toda Y; Okura F; Ito J; Okada S; Kinoshita T; Tsuji H; Saisho D
    Commun Biol; 2020 Apr; 3(1):173. PubMed ID: 32296118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. phenoSeeder - A Robot System for Automated Handling and Phenotyping of Individual Seeds.
    Jahnke S; Roussel J; Hombach T; Kochs J; Fischbach A; Huber G; Scharr H
    Plant Physiol; 2016 Nov; 172(3):1358-1370. PubMed ID: 27663410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resources for image-based high-throughput phenotyping in crops and data sharing challenges.
    Danilevicz MF; Bayer PE; Nestor BJ; Bennamoun M; Edwards D
    Plant Physiol; 2021 Oct; 187(2):699-715. PubMed ID: 34608963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.