These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The Primary Root of Sorghum bicolor (L. Moench) as a Model System to Study Brassinosteroid Signaling in Crops. Blasco-Escámez D; Lozano-Elena F; Fàbregas N; Caño-Delgado AI Methods Mol Biol; 2017; 1564():181-192. PubMed ID: 28124255 [TBL] [Abstract][Full Text] [Related]
4. Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species. Woldesemayat AA; Modise DM; Gemeildien J; Ndimba BK; Christoffels A PLoS One; 2018; 13(3):e0192678. PubMed ID: 29590108 [TBL] [Abstract][Full Text] [Related]
6. Drought tolerance strategies highlighted by two Sorghum bicolor races in a dry-down experiment. Fracasso A; Trindade L; Amaducci S J Plant Physiol; 2016 Jan; 190():1-14. PubMed ID: 26624226 [TBL] [Abstract][Full Text] [Related]
7. Proteomic Analysis Revealed Different Molecular Mechanisms of Response to PEG Stress in Drought-Sensitive and Drought-Resistant Sorghums. Li Y; Tan B; Wang D; Mu Y; Li G; Zhang Z; Pan Y; Zhu L Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36362085 [TBL] [Abstract][Full Text] [Related]
8. Differential responses of sorghum genotypes to drought stress revealed by physio-chemical and transcriptional analysis. Rajarajan K; Ganesamurthy K; Raveendran M; Jeyakumar P; Yuvaraja A; Sampath P; Prathima PT; Senthilraja C Mol Biol Rep; 2021 Mar; 48(3):2453-2462. PubMed ID: 33755850 [TBL] [Abstract][Full Text] [Related]
9. SbNAC9 Improves Drought Tolerance by Enhancing Scavenging Ability of Reactive Oxygen Species and Activating Stress-Responsive Genes of Sorghum. Jin X; Zheng Y; Wang J; Chen W; Yang Z; Chen Y; Yang Y; Lu G; Sun B Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768724 [TBL] [Abstract][Full Text] [Related]
10. Comprehensive in silico analysis of the underutilized crop tef (Eragrostis tef (Zucc.) Trotter) genome reveals drought tolerance signatures. Bekele-Alemu A; Ligaba-Osena A BMC Plant Biol; 2023 Oct; 23(1):506. PubMed ID: 37865758 [TBL] [Abstract][Full Text] [Related]
11. Physiological and Differential Proteomic Analyses of Imitation Drought Stress Response in Li H; Li Y; Ke Q; Kwak SS; Zhang S; Deng X Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33271965 [TBL] [Abstract][Full Text] [Related]
12. Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress. Abreha KB; Enyew M; Carlsson AS; Vetukuri RR; Feyissa T; Motlhaodi T; Ng'uni D; Geleta M Planta; 2021 Dec; 255(1):20. PubMed ID: 34894286 [TBL] [Abstract][Full Text] [Related]
13. Morphological analysis and stage determination of anther development in Sorghum [Sorghum bicolor (L.) Moench]. Laza HE; Kaur-Kapoor H; Xin Z; Payton PR; Chen J Planta; 2022 Mar; 255(4):86. PubMed ID: 35286485 [TBL] [Abstract][Full Text] [Related]
14. Comprehensive analysis of MAPK cascade genes in sorghum (Sorghum bicolor L.) reveals SbMPK14 as a potential target for drought sensitivity regulation. Zhou M; Zhao B; Li H; Ren W; Zhang Q; Liu Y; Zhao J Genomics; 2022 Mar; 114(2):110311. PubMed ID: 35176445 [TBL] [Abstract][Full Text] [Related]