These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 35895313)
1. Antisymmetric Exchange in a Real Copper Triangular Complex. Bouammali MA; Suaud N; Guihéry N; Maurice R Inorg Chem; 2022 Aug; 61(31):12138-12148. PubMed ID: 35895313 [TBL] [Abstract][Full Text] [Related]
2. Origin of Ferromagnetism and Magnetic Anisotropy in a Family of Copper(II) Triangles. Mathivathanan L; Rogez G; Ben Amor N; Robert V; Raptis RG; Boudalis AK Chemistry; 2020 Oct; 26(56):12769-12784. PubMed ID: 32343007 [TBL] [Abstract][Full Text] [Related]
3. Antisymmetric exchange in triangular tricopper(II) complexes: correlation among structural, magnetic, and electron paramagnetic resonance parameters. Ferrer S; Lloret F; Pardo E; Clemente-Juan JM; Liu-González M; García-Granda S Inorg Chem; 2012 Jan; 51(2):985-1001. PubMed ID: 22220521 [TBL] [Abstract][Full Text] [Related]
4. Impact of the electric field on isotropic and anisotropic spin Hamiltonian parameters. Pradines B; Cahier B; Suaud N; Guihéry N J Chem Phys; 2022 Nov; 157(20):204308. PubMed ID: 36456220 [TBL] [Abstract][Full Text] [Related]
5. Extraction of giant Dzyaloshinskii-Moriya interaction from ab initio calculations: First-order spin-orbit coupling model and methodological study. Bouammali MA; Suaud N; Maurice R; Guihéry N J Chem Phys; 2021 Oct; 155(16):164305. PubMed ID: 34717350 [TBL] [Abstract][Full Text] [Related]
6. Antisymmetric Magnetic Interactions in Oxo-Bridged Copper(II) Bimetallic Systems. Maurice R; Pradipto AM; Guihéry N; Broer R; de Graaf C J Chem Theory Comput; 2010 Oct; 6(10):3092-101. PubMed ID: 26616771 [TBL] [Abstract][Full Text] [Related]
7. Spectroscopic demonstration of a large antisymmetric exchange contribution to the spin-frustrated ground state of a D3 symmetric hydroxy-bridged trinuclear Cu(II) complex: ground-to-excited state superexchange pathways. Yoon J; Mirica LM; Stack TD; Solomon EI J Am Chem Soc; 2004 Oct; 126(39):12586-95. PubMed ID: 15453791 [TBL] [Abstract][Full Text] [Related]
8. Theoretical analysis of the spin Hamiltonian parameters in Co(II)S4 complexes, using density functional theory and correlated ab initio methods. Maganas D; Sottini S; Kyritsis P; Groenen EJ; Neese F Inorg Chem; 2011 Sep; 50(18):8741-54. PubMed ID: 21848258 [TBL] [Abstract][Full Text] [Related]
9. How to create giant Dzyaloshinskii-Moriya interactions? Analytical derivation and ab initio calculations on model dicopper(II) complexes. Bouammali MA; Suaud N; Martins C; Maurice R; Guihéry N J Chem Phys; 2021 Apr; 154(13):134301. PubMed ID: 33832262 [TBL] [Abstract][Full Text] [Related]
10. Noncollinear Two-Component Quasirelativistic Description of Spin Interactions in Exchange-Coupled Systems. Mapping Generalized Broken-Symmetry States to Effective Spin Hamiltonians. Wodyński A; Kaupp M J Chem Theory Comput; 2018 Mar; 14(3):1267-1276. PubMed ID: 29376389 [TBL] [Abstract][Full Text] [Related]
11. Physical origin of the anisotropic exchange tensor close to the first-order spin-orbit coupling regime and impact of the electric field on its magnitude. Heully-Alary F; Pradines B; Suaud N; Guihéry N J Chem Phys; 2024 Aug; 161(5):. PubMed ID: 39105550 [TBL] [Abstract][Full Text] [Related]
12. Investigating magnetostructural correlations in the pseudooctahedral trans-[Ni(II){(OPPh2)(EPPh2)N}2(sol)2] complexes (E = S, Se; sol = DMF, THF) by magnetometry, HFEPR, and ab initio quantum chemistry. Maganas D; Krzystek J; Ferentinos E; Whyte AM; Robertson N; Psycharis V; Terzis A; Neese F; Kyritsis P Inorg Chem; 2012 Jul; 51(13):7218-31. PubMed ID: 22697407 [TBL] [Abstract][Full Text] [Related]
13. Correlation of the Dzyaloshinskii-Moriya interaction with Heisenberg exchange and orbital asphericity. Kim S; Ueda K; Go G; Jang PH; Lee KJ; Belabbes A; Manchon A; Suzuki M; Kotani Y; Nakamura T; Nakamura K; Koyama T; Chiba D; Yamada KT; Kim DH; Moriyama T; Kim KJ; Ono T Nat Commun; 2018 Apr; 9(1):1648. PubMed ID: 29695776 [TBL] [Abstract][Full Text] [Related]
14. A first-principles approach to the calculation of the on-site zero-field splitting in polynuclear transition metal complexes. Retegan M; Cox N; Pantazis DA; Neese F Inorg Chem; 2014 Nov; 53(21):11785-93. PubMed ID: 25340874 [TBL] [Abstract][Full Text] [Related]
15. Isotropic and antisymmetric double-exchange, zero-field, Zeeman, and hyperfine splittings in trinuclear valence-delocalized [Cu3(7+)] clusters. Belinsky MI Inorg Chem; 2006 Oct; 45(22):9096-106. PubMed ID: 17054370 [TBL] [Abstract][Full Text] [Related]
16. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
17. Oxygen-enabled control of Dzyaloshinskii-Moriya Interaction in ultra-thin magnetic films. Belabbes A; Bihlmayer G; Blügel S; Manchon A Sci Rep; 2016 Apr; 6():24634. PubMed ID: 27103448 [TBL] [Abstract][Full Text] [Related]
18. The inverse thermal spin-orbit torque and the relation of the Dzyaloshinskii-Moriya interaction to ground-state energy currents. Freimuth F; Blügel S; Mokrousov Y J Phys Condens Matter; 2016 Aug; 28(31):316001. PubMed ID: 27301682 [TBL] [Abstract][Full Text] [Related]
19. Ab initio multireference configuration-interaction theoretical study on the low-lying spin states in binuclear transition-metal complex: magnetic exchange of [(NH3)5Cr(mu-OH)Cr(NH3)5]5+ and [Cl3FeOFeCl3]2-. Wang B; Wei H; Wang M; Chen Z J Chem Phys; 2005 May; 122(20):204310. PubMed ID: 15945727 [TBL] [Abstract][Full Text] [Related]
20. The resolution of the weak-exchange limit made rigorous, simple and general in binuclear complexes. Sergentu DC; Le Guennic B; Maurice R Phys Chem Chem Phys; 2024 Feb; 26(8):6844-6861. PubMed ID: 38328993 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]