BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35895316)

  • 1. DFT-ReaxFF hybrid molecular dynamics investigation of the decomposition effects of localized high-concentration electrolyte in lithium metal batteries: LiFSI/DME/TFEO.
    Lu Y; Sun Q; Liu Y; Yu P; Zhang Y; Lu J; Huang H; Yang H; Cheng T
    Phys Chem Chem Phys; 2022 Aug; 24(31):18684-18690. PubMed ID: 35895316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localized high concentration electrolytes decomposition under electron-rich environments.
    Zheng Y; Balbuena PB
    J Chem Phys; 2021 Mar; 154(10):104702. PubMed ID: 33722005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale Simulation of Solid Electrolyte Interface Formation in Fluorinated Diluted Electrolytes with Lithium Anodes.
    Yu P; Sun Q; Liu Y; Ma B; Yang H; Xie M; Cheng T
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):7972-7979. PubMed ID: 35129322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multinuclear NMR Study of the Solid Electrolyte Interface Formed in Lithium Metal Batteries.
    Wan C; Xu S; Hu MY; Cao R; Qian J; Qin Z; Liu J; Mueller KT; Zhang JG; Hu JZ
    ACS Appl Mater Interfaces; 2017 May; 9(17):14741-14748. PubMed ID: 28375601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode.
    Camacho-Forero LE; Balbuena PB
    Phys Chem Chem Phys; 2017 Nov; 19(45):30861-30873. PubMed ID: 29135003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of Lithium-Sulfur Battery Performance by Porous Carbon Selection and LiFSI/DME Electrolyte Optimization.
    Yoshida L; Matsui Y; Deguchi M; Hakari T; Watanabe M; Ishikawa M
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37467-37476. PubMed ID: 37494603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of High and Low Salt Concentrations in Electrolytes at Lithium-Metal Anode Surfaces Using DFT-ReaxFF Hybrid Molecular Dynamics Method.
    Liu Y; Sun Q; Yu P; Wu Y; Xu L; Yang H; Xie M; Cheng T; Goddard WA
    J Phys Chem Lett; 2021 Mar; 12(11):2922-2929. PubMed ID: 33725449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonflammable Localized High-Concentration Electrolytes with Long-Term Cycling Stability for High-Performance Li Metal Batteries.
    Xu Z; Deng K; Zhou S; Liu Z; Guan X; Mo D
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):48694-48704. PubMed ID: 36279165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a LiF-Rich Solid Electrolyte Interphase Layer through Highly Concentrated LiFSI-THF Electrolyte for Stable Lithium Metal Batteries.
    Pham TD; Bin Faheem A; Lee KK
    Small; 2021 Nov; 17(46):e2103375. PubMed ID: 34636172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes.
    Chen S; Zheng J; Mei D; Han KS; Engelhard MH; Zhao W; Xu W; Liu J; Zhang JG
    Adv Mater; 2018 May; 30(21):e1706102. PubMed ID: 29575163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preferential decomposition of the major anion in a dual-salt electrolyte facilitates the formation of organic-inorganic composite solid electrolyte interphase.
    Qi F; Yu P; Zhou Q; Liu Y; Sun Q; Ma B; Ren X; Cheng T
    J Chem Phys; 2023 Mar; 158(10):104704. PubMed ID: 36922150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LiFSI and LiDFBOP Dual-Salt Electrolyte Reinforces the Solid Electrolyte Interphase on a Lithium Metal Anode.
    Liu S; Zhang Q; Wang X; Xu M; Li W; Lucht BL
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33719-33728. PubMed ID: 32608965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complementary Electrolyte Design for Li Metal Batteries in Electric Vehicle Applications.
    He M; Su CC; Xu F; Amine K; Cai M
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):25879-25889. PubMed ID: 34028245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The DFT-ReaxFF Hybrid Reactive Dynamics Method with Application to the Reductive Decomposition Reaction of the TFSI and DOL Electrolyte at a Lithium-Metal Anode Surface.
    Liu Y; Yu P; Wu Y; Yang H; Xie M; Huai L; Goddard WA; Cheng T
    J Phys Chem Lett; 2021 Feb; 12(4):1300-1306. PubMed ID: 33502211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-Term Stable Lithium Metal Anode in Highly Concentrated Sulfolane-Based Electrolytes with Ultrafine Porous Polyimide Separator.
    Maeyoshi Y; Ding D; Kubota M; Ueda H; Abe K; Kanamura K; Abe H
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):25833-25843. PubMed ID: 31245988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical performance and interfacial properties of Li-metal in lithium bis(fluorosulfonyl)imide based electrolytes.
    Younesi R; Bardé F
    Sci Rep; 2017 Nov; 7(1):15925. PubMed ID: 29162891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steric Effect Tuned Ion Solvation Enabling Stable Cycling of High-Voltage Lithium Metal Battery.
    Chen Y; Yu Z; Rudnicki P; Gong H; Huang Z; Kim SC; Lai JC; Kong X; Qin J; Cui Y; Bao Z
    J Am Chem Soc; 2021 Nov; 143(44):18703-18713. PubMed ID: 34709034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium Bis(fluorosulfonyl)imide for Stabilized Interphases on Conjugated Dicarboxylate Electrode.
    Wu H; Feng W; Armand M; Zhou Z; Zhang H
    ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38078443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Powerful Protocol Based on Anode-Free Cells Combined with Various Analytical Techniques.
    Hagos TM; Bezabh HK; Huang CJ; Jiang SK; Su WN; Hwang BJ
    Acc Chem Res; 2021 Dec; 54(24):4474-4485. PubMed ID: 34763425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Practical High-Voltage Lithium Metal Batteries Enabled by Tuning the Solvation Structure in Weakly Solvating Electrolyte.
    Pham TD; Bin Faheem A; Kim J; Oh HM; Lee KK
    Small; 2022 Apr; 18(14):e2107492. PubMed ID: 35212457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.