These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35895510)

  • 1. Ensemble methods for survival function estimation with time-varying covariates.
    Yao W; Frydman H; Larocque D; Simonoff JS
    Stat Methods Med Res; 2022 Nov; 31(11):2217-2236. PubMed ID: 35895510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of the conditional inference survival forest model to random survival forests based on a simulation study as well as on two applications with time-to-event data.
    Nasejje JB; Mwambi H; Dheda K; Lesosky M
    BMC Med Res Methodol; 2017 Jul; 17(1):115. PubMed ID: 28754093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L₁ splitting rules in survival forests.
    Moradian H; Larocque D; Bellavance F
    Lifetime Data Anal; 2017 Oct; 23(4):671-691. PubMed ID: 27379423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Application of conditional inference forest in time-to-event data analysis].
    Liu Y; Kang P; Xu J; An S
    Nan Fang Yi Ke Da Xue Xue Bao; 2020 Apr; 40(4):475-482. PubMed ID: 32895141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of random survival forests in understanding the determinants of under-five child mortality in Uganda in the presence of covariates that satisfy the proportional and non-proportional hazards assumption.
    Nasejje JB; Mwambi H
    BMC Res Notes; 2017 Sep; 10(1):459. PubMed ID: 28882171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survival forests for data with dependent censoring.
    Moradian H; Larocque D; Bellavance F
    Stat Methods Med Res; 2019 Feb; 28(2):445-461. PubMed ID: 28835170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of forest methods for time-to-event data: variable selection and predictive performance.
    Liu Y; Zhou S; Wei H; An S
    BMC Med Res Methodol; 2021 Sep; 21(1):193. PubMed ID: 34563138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Survival forests under test: Impact of the proportional hazards assumption on prognostic and predictive forests for amyotrophic lateral sclerosis survival.
    Korepanova N; Seibold H; Steffen V; Hothorn T
    Stat Methods Med Res; 2020 May; 29(5):1403-1419. PubMed ID: 31304888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survival estimation through the cumulative hazard with monotone natural cubic splines using convex optimization-the HCNS approach.
    Bantis LE; Tsimikas JV; Georgiou SD
    Comput Methods Programs Biomed; 2020 Jul; 190():105357. PubMed ID: 32036203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confidence bands for the difference between two median survival times as a function of covariates.
    Chen YI; Chang YM; Lee JY
    Lifetime Data Anal; 2015 Jan; 21(1):97-118. PubMed ID: 24096594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Doubly robust estimator of risk in the presence of censoring dependent on time-varying covariates: application to a primary prevention trial for coronary events with pravastatin.
    Kawahara T; Shinozaki T; Matsuyama Y
    BMC Med Res Methodol; 2020 Jul; 20(1):204. PubMed ID: 32736528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conditional transformation models for survivor function estimation.
    Möst L; Hothorn T
    Int J Biostat; 2015 May; 11(1):23-50. PubMed ID: 25719339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing an Improved Statistical Approach for Survival Estimation in Bone Metastases Management: The Bone Metastases Ensemble Trees for Survival (BMETS) Model.
    Alcorn SR; Fiksel J; Wright JL; Elledge CR; Smith TJ; Perng P; Saleemi S; McNutt TR; DeWeese TL; Zeger S
    Int J Radiat Oncol Biol Phys; 2020 Nov; 108(3):554-563. PubMed ID: 32446952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Survival curve estimation with dependent left truncated data using Cox's model.
    Mackenzie T
    Int J Biostat; 2012 Oct; 8(1):. PubMed ID: 23104845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OBLIQUE RANDOM SURVIVAL FORESTS.
    Jaeger BC; Long DL; Long DM; Sims M; Szychowski JM; Min YI; Mcclure LA; Howard G; Simon N
    Ann Appl Stat; 2019 Sep; 13(3):1847-1883. PubMed ID: 36704751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Random survival forest with space extensions for censored data.
    Wang H; Zhou L
    Artif Intell Med; 2017 Jun; 79():52-61. PubMed ID: 28641924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing machine learning approaches to incorporate time-varying covariates in predicting cancer survival time.
    Cygu S; Seow H; Dushoff J; Bolker BM
    Sci Rep; 2023 Jan; 13(1):1370. PubMed ID: 36697455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation in the cox proportional hazards model with left-truncated and interval-censored data.
    Pan W; Chappell R
    Biometrics; 2002 Mar; 58(1):64-70. PubMed ID: 11890328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating trends in the incidence rate with interval censored data and time-dependent covariates.
    Vandormael A; Tanser F; Cuadros D; Dobra A
    Stat Methods Med Res; 2020 Jan; 29(1):272-281. PubMed ID: 30782096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A K-nearest neighbors survival probability prediction method.
    Lowsky DJ; Ding Y; Lee DK; McCulloch CE; Ross LF; Thistlethwaite JR; Zenios SA
    Stat Med; 2013 May; 32(12):2062-9. PubMed ID: 23653217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.