These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35895592)

  • 1. Overexpression of Decay Accelerating Factor Mitigates Fibrotic Responses to Lung Injury.
    Vittal R; Fisher AJ; Thompson EL; Cipolla EM; Gu H; Mickler EA; Varre A; Agarwal M; Kim KK; Vasko MR; Moore BB; Lama VN
    Am J Respir Cell Mol Biol; 2022 Oct; 67(4):459-470. PubMed ID: 35895592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IL-17A deficiency mitigates bleomycin-induced complement activation during lung fibrosis.
    Cipolla E; Fisher AJ; Gu H; Mickler EA; Agarwal M; Wilke CA; Kim KK; Moore BB; Vittal R
    FASEB J; 2017 Dec; 31(12):5543-5556. PubMed ID: 28821630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of the anaphylatoxin receptors, C3aR and C5aR, to the pathogenesis of pulmonary fibrosis.
    Gu H; Fisher AJ; Mickler EA; Duerson F; Cummings OW; Peters-Golden M; Twigg HL; Woodruff TM; Wilkes DS; Vittal R
    FASEB J; 2016 Jun; 30(6):2336-50. PubMed ID: 26956419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decay accelerating factor (CD55) protects neuronal cells from chemical hypoxia-induced injury.
    Wang Y; Li Y; Dalle Lucca SL; Simovic M; Tsokos GC; Dalle Lucca JJ
    J Neuroinflammation; 2010 Apr; 7():24. PubMed ID: 20380727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crosstalk between TGF-β1 and complement activation augments epithelial injury in pulmonary fibrosis.
    Gu H; Mickler EA; Cummings OW; Sandusky GE; Weber DJ; Gracon A; Woodruff T; Wilkes DS; Vittal R
    FASEB J; 2014 Oct; 28(10):4223-34. PubMed ID: 24958208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmembrane protease, serine 4 (TMPRSS4) is upregulated in IPF lungs and increases the fibrotic response in bleomycin-induced lung injury.
    Valero-Jiménez A; Zúñiga J; Cisneros J; Becerril C; Salgado A; Checa M; Buendía-Roldán I; Mendoza-Milla C; Gaxiola M; Pardo A; Selman M
    PLoS One; 2018; 13(3):e0192963. PubMed ID: 29529050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased Levels of ER Stress and Apoptosis in a Sheep Model for Pulmonary Fibrosis Are Alleviated by
    Perera UE; Organ L; Dewage SNV; Derseh HB; Stent A; Snibson KJ
    Can Respir J; 2021; 2021():6683195. PubMed ID: 33828632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of glycosylphosphatidylinositol-anchored decay accelerating factor (GPI-DAF) and transmembrane DAF gene expression in wild-type and GPI-DAF gene knockout mice using polyclonal and monoclonal antibodies with dual or single specificity.
    Miwa T; Sun X; Ohta R; Okada N; Harris CL; Morgan BP; Song WC
    Immunology; 2001 Oct; 104(2):207-14. PubMed ID: 11683961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heme oxygenase-1 expression enhances vascular endothelial resistance to complement-mediated injury through induction of decay-accelerating factor: a role for increased bilirubin and ferritin.
    Kinderlerer AR; Pombo Gregoire I; Hamdulay SS; Ali F; Steinberg R; Silva G; Ali N; Wang B; Haskard DO; Soares MP; Mason JC
    Blood; 2009 Feb; 113(7):1598-607. PubMed ID: 19036700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue distribution of products of the mouse decay-accelerating factor (DAF) genes. Exploitation of a Daf1 knock-out mouse and site-specific monoclonal antibodies.
    Lin F; Fukuoka Y; Spicer A; Ohta R; Okada N; Harris CL; Emancipator SN; Medof ME
    Immunology; 2001 Oct; 104(2):215-25. PubMed ID: 11683962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decay-Accelerating Factor Creates an Organ-Protective Phenotype after Hemorrhage in Conscious Rats.
    Simovic MO; Falabella MJ; Le TD; DalleLucca JJ; Li Y
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decay-accelerating factor induction by tumour necrosis factor-alpha, through a phosphatidylinositol-3 kinase and protein kinase C-dependent pathway, protects murine vascular endothelial cells against complement deposition.
    Ahmad SR; Lidington EA; Ohta R; Okada N; Robson MG; Davies KA; Leitges M; Harris CL; Haskard DO; Mason JC
    Immunology; 2003 Oct; 110(2):258-68. PubMed ID: 14511240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipid-anchored and transmembrane versions of either decay-accelerating factor or membrane cofactor protein show equal efficiency in protection from complement-mediated cell damage.
    Lublin DM; Coyne KE
    J Exp Med; 1991 Jul; 174(1):35-44. PubMed ID: 1711565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epithelial Endoplasmic Reticulum Stress Enhances the Risk of Muc5b-associated Lung Fibrosis.
    Dobrinskikh E; Hennessy CE; Kurche JS; Kim E; Estrella AM; Cardwell J; Yang IV; Schwartz DA
    Am J Respir Cell Mol Biol; 2023 Jan; 68(1):62-74. PubMed ID: 36108173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of decay-accelerating factor in regulating complement activation on the erythrocyte surface as revealed by gene targeting.
    Sun X; Funk CD; Deng C; Sahu A; Lambris JD; Song WC
    Proc Natl Acad Sci U S A; 1999 Jan; 96(2):628-33. PubMed ID: 9892684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crry, but not CD59 and DAF, is indispensable for murine erythrocyte protection in vivo from spontaneous complement attack.
    Miwa T; Zhou L; Hilliard B; Molina H; Song WC
    Blood; 2002 May; 99(10):3707-16. PubMed ID: 11986227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperation between decay-accelerating factor and membrane cofactor protein in protecting cells from autologous complement attack.
    Brodbeck WG; Mold C; Atkinson JP; Medof ME
    J Immunol; 2000 Oct; 165(7):3999-4006. PubMed ID: 11034410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential Mechanisms Underlying TGF-β-mediated Complement Activation in Lung Fibrosis.
    Fisher AJ; Cipolla E; Varre A; Gu H; Mickler EA; Vittal R
    Cell Mol Med Open Access; 2017; 3(3):. PubMed ID: 29377033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased susceptibility of decay-accelerating factor deficient mice to anti-glomerular basement membrane glomerulonephritis.
    Sogabe H; Nangaku M; Ishibashi Y; Wada T; Fujita T; Sun X; Miwa T; Madaio MP; Song WC
    J Immunol; 2001 Sep; 167(5):2791-7. PubMed ID: 11509624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential contributions of C3, C5, and decay-accelerating factor to ethanol-induced fatty liver in mice.
    Pritchard MT; McMullen MR; Stavitsky AB; Cohen JI; Lin F; Edward Medof M; Nagy LE
    Gastroenterology; 2007 Mar; 132(3):1117-1126. PubMed ID: 17383432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.