BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35895639)

  • 1. Sparse-Based Domain Adaptation Network for OCTA Image Super-Resolution Reconstruction.
    Hao H; Xu C; Zhang D; Yan Q; Zhang J; Liu Y; Zhao Y
    IEEE J Biomed Health Inform; 2022 Sep; 26(9):4402-4413. PubMed ID: 35895639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SGSR: style-subnets-assisted generative latent bank for large-factor super-resolution with registered medical image dataset.
    Zheng T; Oda H; Hayashi Y; Nakamura S; Mori M; Takabatake H; Natori H; Oda M; Mori K
    Int J Comput Assist Radiol Surg; 2024 Mar; 19(3):493-506. PubMed ID: 38129364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-Resolution Reconstruction of CT Images Based on Multi-scale Information Fused Generative Adversarial Networks.
    Liu X; Su S; Gu W; Yao T; Shen J; Mo Y
    Ann Biomed Eng; 2024 Jan; 52(1):57-70. PubMed ID: 38064116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinal fundus image superresolution generated by optical coherence tomography based on a realistic mixed attention GAN.
    Tian C; Yang J; Li P; Zhang S; Mi S
    Med Phys; 2022 May; 49(5):3185-3198. PubMed ID: 35238048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic Optical Coherence Tomography Angiographs for Detailed Retinal Vessel Segmentation Without Human Annotations.
    Kreitner L; Paetzold JC; Rauch N; Chen C; Hagag AM; Fayed AE; Sivaprasad S; Rausch S; Weichsel J; Menze BH; Harders M; Knier B; Rueckert D; Menten MJ
    IEEE Trans Med Imaging; 2024 Jun; 43(6):2061-2073. PubMed ID: 38224512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MRI super-resolution via realistic downsampling with adversarial learning.
    Huang B; Xiao H; Liu W; Zhang Y; Wu H; Wang W; Yang Y; Yang Y; Miller GW; Li T; Cai J
    Phys Med Biol; 2021 Oct; 66(20):. PubMed ID: 34474407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved generative adversarial network for retinal image super-resolution.
    Qiu D; Cheng Y; Wang X
    Comput Methods Programs Biomed; 2022 Oct; 225():106995. PubMed ID: 35970055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bidirectional Mapping Perception-enhanced Cycle-consistent Generative Adversarial Network for Super-resolution of Brain MRI images.
    Sun J; Jiang J; Ling R; Wang L; Jiang J; Wang M
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generative adversarial network-based sinogram super-resolution for computed tomography imaging.
    Tang C; Zhang W; Wang L; Cai A; Liang N; Li L; Yan B
    Phys Med Biol; 2020 Dec; 65(23):235006. PubMed ID: 33053522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel deep learning conditional generative adversarial network for producing angiography images from retinal fundus photographs.
    Tavakkoli A; Kamran SA; Hossain KF; Zuckerbrod SL
    Sci Rep; 2020 Dec; 10(1):21580. PubMed ID: 33299065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hand-held optical coherence tomography angiography scanner based on angiography reconstruction transformer networks.
    Liao J; Yang S; Zhang T; Li C; Huang Z
    J Biophotonics; 2023 Sep; 16(9):e202300100. PubMed ID: 37264544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A diagnostic information based framework for super-resolution and quality assessment of retinal OCT images.
    Das V; Dandapat S; Bora PK
    Comput Med Imaging Graph; 2021 Dec; 94():101997. PubMed ID: 34678643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-supervised super-resolution of diffusion-weighted images based on multiple references.
    Guo H; Wang L; Gu Y; Zhang J; Zhu Y
    NMR Biomed; 2023 Aug; 36(8):e4919. PubMed ID: 36908072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: In the presence of limited training data and unknown translation model.
    Chun J; Zhang H; Gach HM; Olberg S; Mazur T; Green O; Kim T; Kim H; Kim JS; Mutic S; Park JC
    Med Phys; 2019 Sep; 46(9):4148-4164. PubMed ID: 31309585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New Model.
    Ma Y; Hao H; Xie J; Fu H; Zhang J; Yang J; Wang Z; Liu J; Zheng Y; Zhao Y
    IEEE Trans Med Imaging; 2021 Mar; 40(3):928-939. PubMed ID: 33284751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint Framework for Single Image Reconstruction and Super-Resolution With an Event Camera.
    Wang L; Kim TK; Yoon KJ
    IEEE Trans Pattern Anal Mach Intell; 2022 Nov; 44(11):7657-7673. PubMed ID: 34543191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multiresolution mixture generative adversarial network for video super-resolution.
    Tian Z; Wang Y; Du S; Lan X
    PLoS One; 2020; 15(7):e0235352. PubMed ID: 32649694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Super-resolution of 2D ultrasound images and videos.
    Cammarasana S; Nicolardi P; Patanè G
    Med Biol Eng Comput; 2023 Oct; 61(10):2511-2526. PubMed ID: 37195517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization-based vessel segmentation pipeline for robust quantification of capillary networks in skin with optical coherence tomography angiography.
    Casper M; Schulz-Hildebrandt H; Evers M; Birngruber R; Manstein D; Hüttmann G
    J Biomed Opt; 2019 Apr; 24(4):1-11. PubMed ID: 31041858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical coherence tomography retinal image reconstruction via nonlocal weighted sparse representation.
    Abbasi A; Monadjemi A; Fang L; Rabbani H
    J Biomed Opt; 2018 Mar; 23(3):1-11. PubMed ID: 29575829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.