These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35895921)

  • 1. 3D-printed biomimetic artificial muscles using soft actuators that contract and elongate.
    De Pascali C; Naselli GA; Palagi S; Scharff RBN; Mazzolai B
    Sci Robot; 2022 Jul; 7(68):eabn4155. PubMed ID: 35895921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-printed hierarchical arrangements of actuators mimicking biological muscular architectures.
    De Pascali C; Palagi S; Mazzolai B
    Bioinspir Biomim; 2023 Apr; ():. PubMed ID: 37116509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Soft Pneumatic Artificial Muscle with High-Contraction Ratio.
    Han K; Kim NH; Shin D
    Soft Robot; 2018 Oct; 5(5):554-566. PubMed ID: 29924698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing antagonistic systems of artificial muscle using projection stereolithography.
    Peele BN; Wallin TJ; Zhao H; Shepherd RF
    Bioinspir Biomim; 2015 Sep; 10(5):055003. PubMed ID: 26353071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots.
    Umedachi T; Vikas V; Trimmer BA
    Bioinspir Biomim; 2016 Mar; 11(2):025001. PubMed ID: 26963596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensorized, Flat, Pneumatic Artificial Muscle Embedded with Biomimetic Microfluidic Sensors for Proprioceptive Feedback.
    Wirekoh J; Valle L; Pol N; Park YL
    Soft Robot; 2019 Dec; 6(6):768-777. PubMed ID: 31373881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Design and Mathematical Model of a Novel Variable Stiffness Extensor-Contractor Pneumatic Artificial Muscle.
    Al-Fahaam H; Nefti-Meziani S; Theodoridis T; Davis S
    Soft Robot; 2018 Oct; 5(5):576-591. PubMed ID: 30040059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Empirical modeling of dynamic behaviors of pneumatic artificial muscle actuators.
    Wickramatunge KC; Leephakpreeda T
    ISA Trans; 2013 Nov; 52(6):825-34. PubMed ID: 23871151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cavatappi artificial muscles from drawing, twisting, and coiling polymer tubes.
    Higueras-Ruiz DR; Shafer MW; Feigenbaum HP
    Sci Robot; 2021 Apr; 6(53):. PubMed ID: 34043560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid-driven origami-inspired artificial muscles.
    Li S; Vogt DM; Rus D; Wood RJ
    Proc Natl Acad Sci U S A; 2017 Dec; 114(50):13132-13137. PubMed ID: 29180416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A modular approach to the design, fabrication, and characterization of muscle-powered biological machines.
    Raman R; Cvetkovic C; Bashir R
    Nat Protoc; 2017 Mar; 12(3):519-533. PubMed ID: 28182019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles.
    Tawk C; In Het Panhuis M; Spinks GM; Alici G
    Soft Robot; 2018 Dec; 5(6):685-694. PubMed ID: 30040042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent progress in engineering functional biohybrid robots actuated by living cells.
    Gao L; Akhtar MU; Yang F; Ahmad S; He J; Lian Q; Cheng W; Zhang J; Li D
    Acta Biomater; 2021 Feb; 121():29-40. PubMed ID: 33285324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D printing of resilient biogels for omnidirectional and exteroceptive soft actuators.
    Heiden A; Preninger D; Lehner L; Baumgartner M; Drack M; Woritzka E; Schiller D; Gerstmayr R; Hartmann F; Kaltenbrunner M
    Sci Robot; 2022 Feb; 7(63):eabk2119. PubMed ID: 35108023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HASEL Artificial Muscles for a New Generation of Lifelike Robots-Recent Progress and Future Opportunities.
    Rothemund P; Kellaris N; Mitchell SK; Acome E; Keplinger C
    Adv Mater; 2021 May; 33(19):e2003375. PubMed ID: 33166000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tool changing 3D printer for rapid prototyping of advanced soft robotic elements.
    Conrad S; Speck T; Tauber FJ
    Bioinspir Biomim; 2021 Aug; 16(5):. PubMed ID: 34102629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser-Induced Graphene for Electrothermally Controlled, Mechanically Guided, 3D Assembly and Human-Soft Actuators Interaction.
    Ling Y; Pang W; Li X; Goswami S; Xu Z; Stroman D; Liu Y; Fei Q; Xu Y; Zhao G; Sun B; Xie J; Huang G; Zhang Y; Yan Z
    Adv Mater; 2020 Apr; 32(17):e1908475. PubMed ID: 32173920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smart Pneumatic Artificial Muscle Using a Bend Sensor like a Human Muscle with a Muscle Spindle.
    Saga N; Shimada K; Inamori D; Saito N; Satoh T; Nagase JY
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methodology for designing and manufacturing complex biologically inspired soft robotic fluidic actuators: prosthetic hand case study.
    Thompson-Bean E; Das R; McDaid A
    Bioinspir Biomim; 2016 Oct; 11(6):066005. PubMed ID: 27798408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact and low-cost humanoid hand powered by nylon artificial muscles.
    Wu L; Jung de Andrade M; Saharan LK; Rome RS; Baughman RH; Tadesse Y
    Bioinspir Biomim; 2017 Feb; 12(2):026004. PubMed ID: 28157716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.