These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35896098)

  • 1. A lightweight learning-based decoding algorithm for intraneural vagus nerve activity classification in pigs.
    Pollina L; Vallone F; Ottaviani MM; Strauss I; Carlucci L; Recchia FA; Micera S; Moccia S
    J Neural Eng; 2022 Aug; 19(4):. PubMed ID: 35896098
    [No Abstract]   [Full Text] [Related]  

  • 2. A fast and accurate learning-based decoding algorithm for the classification of cardiovascular and respiratory challenges using intraneural electrodes in the pig vagus nerve.
    Pollina L; Vallone F; Ottaviani MM; Strauss I; Recchia FA; Moccia S; Micera S
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1757-1760. PubMed ID: 36085876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous decoding of cardiovascular and respiratory functional changes from pig intraneural vagus nerve signals.
    Vallone F; Ottaviani MM; Dedola F; Cutrone A; Romeni S; Panarese AM; Bernini F; Cracchiolo M; Strauss I; Gabisonia K; Gorgodze N; Mazzoni A; Recchia FA; Micera S
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34153949
    [No Abstract]   [Full Text] [Related]  

  • 4. Cardiovascular response to closed-loop intraneural stimulation of the right vagus nerve: a proof-of-concept study.
    Zinno C; Agnesi F; Bernini F; Gabisonia K; Terlizzi D; Recchia FA; Lionetti V; Micera S
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method to establish functional vagus nerve topography from electro-neurographic spontaneous activity.
    Pitzus A; Romeni S; Vallone F; Micera S
    Patterns (N Y); 2022 Nov; 3(11):100615. PubMed ID: 36419448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding bladder state from pudendal intraneural signals in pigs.
    Giannotti A; Lo Vecchio S; Musco S; Pollina L; Vallone F; Strauss I; Paggi V; Bernini F; Gabisonia K; Carlucci L; Lenzi C; Pirone A; Giannessi E; Miragliotta V; Lacour S; Del Popolo G; Moccia S; Micera S
    APL Bioeng; 2023 Dec; 7(4):046101. PubMed ID: 37811476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Online Bayesian optimization of vagus nerve stimulation.
    Wernisch L; Edwards T; Berthon A; Tessier-Lariviere O; Sarkans E; Stoukidi M; Fortier-Poisson P; Pinkney M; Thornton M; Hanley C; Lee S; Jennings J; Appleton B; Garsed P; Patterson B; Buttinger W; Gonshaw S; Jakopec M; Shunmugam S; Mamen J; Tukiainen A; Lajoie G; Armitage O; Hewage E
    J Neural Eng; 2024 Apr; 21(2):. PubMed ID: 38479016
    [No Abstract]   [Full Text] [Related]  

  • 8. Reinforcement learning for closed-loop regulation of cardiovascular system with vagus nerve stimulation: a computational study.
    Sarikhani P; Hsu HL; Zeydabadinezhad M; Yao Y; Kothare M; Mahmoudi B
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38718787
    [No Abstract]   [Full Text] [Related]  

  • 9. Artificial Intelligence Algorithm-Based Economic Denial of Sustainability Attack Detection Systems: Cloud Computing Environments.
    Aldhyani THH; Alkahtani H
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Denoising and decoding spontaneous vagus nerve recordings with machine learning.
    Ribeiro M; Koh RGL; Donnelly T; Lutteroth C; Proulx MJ; Rocha PRF; Metcalfe B
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recording and Decoding of Vagal Neural Signals Related to Changes in Physiological Parameters and Biomarkers of Disease.
    Zanos TP
    Cold Spring Harb Perspect Med; 2019 Dec; 9(12):. PubMed ID: 30670469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiovascular Response to Intraneural Right Vagus Nerve Stimulation in Adult Minipig.
    Agnesi F; Zinno C; Strauss I; Dushpanova A; Casieri V; Bernini F; Terlizzi D; Gabisonia K; Paggi V; Lacour SP; Lionetti V; Micera S
    Neuromodulation; 2023 Mar; ():. PubMed ID: 36997453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A spiking neural network with continuous local learning for robust online brain machine interface.
    Taeckens EA; Shah S
    J Neural Eng; 2024 Jan; 20(6):. PubMed ID: 38173230
    [No Abstract]   [Full Text] [Related]  

  • 14. Jump-GRS: a multi-phase approach to structured pruning of neural networks for neural decoding.
    Wu X; Lin DT; Chen R; Bhattacharyya SS
    J Neural Eng; 2023 Jul; 20(4):. PubMed ID: 37429288
    [No Abstract]   [Full Text] [Related]  

  • 15. Neural Stimulation Hardware for the Selective Intrafascicular Modulation of the Vagus Nerve.
    Strauss I; Agnesi F; Zinno C; Giannotti A; Dushpanova A; Casieri V; Terlizzi D; Bernini F; Gabisonia K; Wu Y; Jiang D; Paggi V; Lacour S; Recchia F; Demosthenous A; Lionetti V; Micera S
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4449-4458. PubMed ID: 37917519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpretable and lightweight convolutional neural network for EEG decoding: Application to movement execution and imagination.
    Borra D; Fantozzi S; Magosso E
    Neural Netw; 2020 Sep; 129():55-74. PubMed ID: 32502798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opportunities and challenges for developing closed-loop bioelectronic medicines.
    Ganzer PD; Sharma G
    Neural Regen Res; 2019 Jan; 14(1):46-50. PubMed ID: 30531069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved pig behavior analysis by optimizing window sizes for individual behaviors on acceleration and angular velocity data.
    Alghamdi S; Zhao Z; Ha DS; Morota G; Ha SS
    J Anim Sci; 2022 Nov; 100(11):. PubMed ID: 36056754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning-Based Approaches for Decoding Motor Intent From Peripheral Nerve Signals.
    Luu DK; Nguyen AT; Jiang M; Xu J; Drealan MW; Cheng J; Keefer EW; Zhao Q; Yang Z
    Front Neurosci; 2021; 15():667907. PubMed ID: 34248481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning Methods in Computational Toxicology.
    Baskin II
    Methods Mol Biol; 2018; 1800():119-139. PubMed ID: 29934890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.