BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 35896136)

  • 41. Porcine nasal septum cartilage-derived decellularized matrix promotes chondrogenic differentiation of human umbilical mesenchymal stem cells without exogenous growth factors.
    Shen J; Ye D; Jin H; Wu Y; Peng L; Liang Y
    J Mater Chem B; 2024 Jun; 12(22):5513-5524. PubMed ID: 38745541
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The development of a nucleus pulposus-derived cartilage analog scaffold for chondral repair and regeneration.
    Thomas VJ; Buchweitz NF; Baek JJ; Wu Y; Mercuri JJ
    J Biomed Mater Res A; 2024 Mar; 112(3):421-435. PubMed ID: 37964720
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fixation of Hydrogel Constructs for Cartilage Repair in the Equine Model: A Challenging Issue.
    Mancini IAD; Vindas Bolaños RA; Brommer H; Castilho M; Ribeiro A; van Loon JPAM; Mensinga A; van Rijen MHP; Malda J; van Weeren R
    Tissue Eng Part C Methods; 2017 Nov; 23(11):804-814. PubMed ID: 28795641
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Applications of 3D printed bone tissue engineering scaffolds in the stem cell field.
    Su X; Wang T; Guo S
    Regen Ther; 2021 Mar; 16():63-72. PubMed ID: 33598507
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vitro and in vivo efficacy of naturally derived scaffolds for cartilage repair and regeneration.
    Thomas V; Mercuri J
    Acta Biomater; 2023 Nov; 171():1-18. PubMed ID: 37708926
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microfracture Augmentation With Direct In Situ Radial Shockwave Stimulation With Appropriate Energy Has Comparable Repair Performance With Tissue Engineering in the Porcine Osteochondral Defect Model.
    Zhao Z; Li J; Bai X; Wang Y; Wang Q; Lv N; Gao H; Guo Z; Zhu H; Guo Q; Li Z
    Am J Sports Med; 2022 Nov; 50(13):3660-3670. PubMed ID: 36190157
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ovine Mesenchymal Stem Cell Chondrogenesis on a Novel 3D-Printed Hybrid Scaffold In Vitro.
    De Mori A; Heyraud A; Tallia F; Blunn G; Jones JR; Roncada T; Cobb J; Al-Jabri T
    Bioengineering (Basel); 2024 Jan; 11(2):. PubMed ID: 38391598
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regenerating articular tissue by converging technologies.
    Moroni L; Hamann D; Paoluzzi L; Pieper J; de Wijn JR; van Blitterswijk CA
    PLoS One; 2008 Aug; 3(8):e3032. PubMed ID: 18716660
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Role of Stem Cells and Their Biomimetic Matrix Microenvironment in Regenerative Repair of Articular Cartilage: A Review].
    Cao HF; Li ZL; Sun Y; Fan YJ; Zhang XD
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Jul; 52(4):548-554. PubMed ID: 34323029
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review.
    Goldberg A; Mitchell K; Soans J; Kim L; Zaidi R
    J Orthop Surg Res; 2017 Mar; 12(1):39. PubMed ID: 28279182
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Growth factor-loaded sulfated microislands in granular hydrogels promote hMSCs migration and chondrogenic differentiation.
    Puiggalí-Jou A; Asadikorayem M; Maniura-Weber K; Zenobi-Wong M
    Acta Biomater; 2023 Aug; 166():69-84. PubMed ID: 37030622
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 3D Bioprinting Using Synovium-Derived MSC-Laden Photo-Cross-Linked ECM Bioink for Cartilage Regeneration.
    Sang S; Mao X; Cao Y; Liu Z; Shen Z; Li M; Jia W; Guo Z; Wang Z; Xiang C; Sun L
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36779653
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Stereolithography-Based 3D Printed Hybrid Scaffold for In Situ Cartilage Defect Repair.
    Aisenbrey EA; Tomaschke A; Kleinjan E; Muralidharan A; Pascual-Garrido C; McLeod RR; Ferguson VL; Bryant SJ
    Macromol Biosci; 2018 Feb; 18(2):. PubMed ID: 29266791
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bioactive 3D Electrohydrodynamic Printed Lattice Architectures Augment Tenogenesis of Tendon Stem/Progenitor Cells.
    Wang L; Shi Y; Qiu Z; Dang J; Sun L; Qu X; He J; Fan H
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):18574-18590. PubMed ID: 38567837
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Progress in microsphere-based scaffolds in bone/cartilage tissue engineering.
    Pan Q; Su W; Yao Y
    Biomed Mater; 2023 Oct; 18(6):. PubMed ID: 37751762
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioengineering Full-scale auricles using 3D-printed external scaffolds and decellularized cartilage xenograft.
    Vernice NA; Dong X; Matavosian AA; Corpuz GS; Shin J; Bonassar LJ; Spector JA
    Acta Biomater; 2024 Apr; 179():121-129. PubMed ID: 38494083
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Decellularized tendon scaffolds loaded with collagen targeted extracellular vesicles from tendon-derived stem cells facilitate tendon regeneration.
    Cui J; Zhang YJ; Li X; Luo JJ; Zhao LL; Xie XY; Ding W; Luo JC; Qin TW
    J Control Release; 2023 Aug; 360():842-857. PubMed ID: 37478916
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Use of Nanomaterials in Tissue Engineering for Cartilage Regeneration; Current Approaches and Future Perspectives.
    Eftekhari A; Maleki Dizaj S; Sharifi S; Salatin S; Rahbar Saadat Y; Zununi Vahed S; Samiei M; Ardalan M; Rameshrad M; Ahmadian E; Cucchiarini M
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31947685
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Simple Method to Produce Engineered Cartilage from Human Adipose-Derived Mesenchymal Stem Cells and Poly ε-Caprolactone Scaffolds.
    Nguyen HT; Vu NB
    Adv Exp Med Biol; 2021 Nov; ():. PubMed ID: 34739719
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Value of 3D Printed PLGA Scaffolds for Cartilage Defects in Terms of Repair.
    Fan L; Teng W; He J; Wang D; Liu C; Zhao Y; Zhang L
    Evid Based Complement Alternat Med; 2022; 2022():3561430. PubMed ID: 35966730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.